Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2011, Article ID 293684, 20 pages
http://dx.doi.org/10.1155/2011/293684
Review Article

Biophotonics Modalities for High-Resolution Imaging of Microcirculatory Tissue Beds Using Endogenous Contrast: A Review on Present Scenario and Prospects

Biophotonics and Functional Imaging Laboratory, Division of Biomedical Engineering, School of Medicine, Oregon Health and Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA

Received 20 October 2010; Revised 23 February 2011; Accepted 10 March 2011

Academic Editor: Armando Nolasco Pinto

Copyright © 2011 Hrebesh M. Subhash. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Mortillaro and A. E. Taylor, The Pathophysiology of the Microcirculation, CRC Press, 1994.
  2. P. G. Camici, “Positron emission tomography and myocardial imaging,” Heart, vol. 83, no. 4, pp. 475–480, 2000. View at Google Scholar · View at Scopus
  3. P. R. Schvartzman and R. D. White, “Magnetic resonance imaging,” in Textbook of Cardiovascular Medicine, E. J. Topol, Ed., pp. 213–1256, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2nd edition, 2002. View at Google Scholar
  4. A. B. Hertzman and C. R. Spealman, “Observation on the finger volume pulse recorded photoelectrically,” American Journal of Physiology, vol. 119, p. 334, 1937. View at Google Scholar
  5. A. V. J. Challoner, “Photoelectric plethysmography for estimating cutaneous blood flow,” in Non-Invasive Physiological Measurements, P. Rolfe, Ed., vol. 1, p. 125, Academic Press, London, UK, 1979. View at Google Scholar
  6. G. Holti and K. W. Mitchell, “Estimation of the nutrient skin blood flow using a non-invasivesegmented thermal probe,” in Non-Invasive Physiological Measurements, P. Rolfe, Ed., vol. 1, p. 113, Academic Press, London, UK, 1979. View at Google Scholar
  7. S. S. Kety, “Measurement of regional circulation by the local clearance of radioactive sodium,” American Heart Journal, vol. 38, no. 3, pp. 321–328, 1949. View at Google Scholar · View at Scopus
  8. P. Sejrsen, “Measurement of cutaneous blood flow by freely diffusible radioactive isotopes. Methodological studies on the washout of krypton-85 and xenon-133 from the cutaneous tissue in man,” Danish Medical Bulletin, vol. 18, Supplement, pp. 3–38, 1971. View at Google Scholar · View at Scopus
  9. W. Groner, J. W. Winkelman, A. G. Harris et al., “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nature Medicine, vol. 5, no. 10, pp. 1209–1213, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. R. G. Nadeau and W. Groner, “The role of a new noninvasive imaging technology in the diagnosis of anemia,” Journal of Nutrition, vol. 131, no. 5, p. 1610S, 2001. View at Google Scholar · View at Scopus
  11. H. Wayland and P. C. Johnson, “Erythrocyte velocity measurement in microvessels by a two-slit photometric method,” Journal of Applied Physiology, vol. 22, no. 2, pp. 333–337, 1967. View at Google Scholar · View at Scopus
  12. A. Bollinger, P. Butti, and J. P. Barras, “Red blood cell velocity in nailfold capillaries of man measured by a television microscopy technique,” Microvascular Research, vol. 7, no. 1, pp. 61–72, 1974. View at Google Scholar · View at Scopus
  13. J. G. Stevenson, M. A. Brandestini, T. Weiler, E. A. Howard, and M. Eyer, “Digital multigate Doppler with color echo and Doppler display—diagnosis of atrial and ventricular septal defects,” Circulation, vol. 60–62, p. 205, 1979. View at Google Scholar
  14. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Physics in Medicine and Biology, vol. 54, no. 4, pp. 1035–1046, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. V. V. Tuchin , Ed., Handbook of Optical Biomedical Diagnostics, vol. PM107, SPIE Press, Bellingham, Wash, USA, 2002.
  16. T. Vo-Dinh, Ed., Biomedical Photonics Handbook, CRC Press, Boca Raton, Fla, USA, 2003.
  17. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, vol. PM 166, SPIE Press, Bellingham, Wash, USA, 2nd edition, 2007.
  18. B. E. Bouma and G. J. Tearney, Eds., Handbook of Optical Coherence Tomography, Marcel-Dekker, New York, NY, USA, 2002.
  19. V. V. Tuchin, Ed., Coherent-Domain Optical Methods for Biomedical Diagnostics, Environmental and Material Science, vol. 1-2, Kluwer Academic Publishers, Boston, Mass, USA, 2004.
  20. M. Bhushan, T. Moore, A. L. Herrick, and C. E. M. Griffiths, “Nailfold video capillaroscopy in psoriasis,” British Journal of Dermatology, vol. 142, no. 6, pp. 1171–1176, 2000. View at Publisher · View at Google Scholar
  21. P. Butti, M. Intaglietta, H. Reimann, C. Holliger, A. Bollinger, and M. Anliker, “Capillary red blood cell velocity measurements in human nail fold by video densitometric method,” Microvascular Research, vol. 10, pp. 220–227, 1975. View at Google Scholar
  22. T. J. Ryan, “Measurement of blood flow and other properties of the vessels of the skin,” in The Physiology and Pathophysiology of the Skin, A. Jarrett, Ed., vol. 1, pp. 653–679, Academic Press, London, UK, 1973. View at Google Scholar
  23. B. Fagrell, A. Fronek, and M. Intaglietta, “A microscope-television system for studying flow velocity in human skin capillaries,” American Journal of Physiology, vol. 233, no. 2, pp. H318–H321, 1977. View at Google Scholar
  24. P. Dolezalova, S. P. Young, P. A. Bacon, and T. R. Southwood, “Nailfold capillary microscopy in healthy children and in childhood rheumatic diseases: a prospective single blind observational study,” Annals of the Rheumatic Diseases, vol. 62, no. 5, pp. 444–449, 2003. View at Publisher · View at Google Scholar
  25. T. Ohtsuka, T. Tamura, A. Yamakage, and S. Yamazaki, “The predictive value of quantitative nailfold capillary microscopy in patients with undifferentiated connective tissue disease,” British Journal of Dermatology, vol. 139, no. 4, pp. 622–629, 1998. View at Publisher · View at Google Scholar
  26. K. A. Kwiterovich, M. G. Maguire, R. P. Murphy et al., “Frequency of adversesystemic reactions after fluorescein angiography. Results of a prospectivestudy,” Ophthalmology, vol. 98, pp. 1139–1142, 1991. View at Google Scholar
  27. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas et al., “Adverse reactions due to indocyanine green,” Ophthalmology, vol. 101, no. 3, pp. 529–533, 1994. View at Google Scholar
  28. D. De Backer and M. J. Dubois, “Assessment of the microcirculatory flow in patients in the intensive care unit,” Current Opinion in Critical Care, vol. 7, no. 3, pp. 200–203, 2001. View at Publisher · View at Google Scholar
  29. J. R. Weinberg, P. Boyle, K. Thomas, K. Murphy, J. E. Tooke, and A. Guz, “Capillary blood cell velocity is reduced in fever without hypotension,” International Journal of Microcirculation, Clinical and Experimental, vol. 10, no. 1, pp. 13–19, 1991. View at Google Scholar
  30. B. Fagrell and M. Intaglietta, “Microcirculation: its significance in clinical and molecular medicine,” Journal of Internal Medicine, vol. 241, no. 5, pp. 349–362, 1997. View at Google Scholar
  31. B. Fagrell, “Microcirculatory methods for the clinical assessment of hypertension, hypotension, and ischemia,” Annals of Biomedical Engineering, vol. 14, no. 2, pp. 163–173, 1986. View at Google Scholar
  32. Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 5, no. 4, pp. 1134–1142, 1999. View at Publisher · View at Google Scholar
  33. M. L. Iabichella, E. Melillo, and G. Mosti, “A review of microvascular measurements in wound healing,” International Journal of Lower Extremity Wounds, vol. 5, no. 3, pp. 181–199, 2006. View at Publisher · View at Google Scholar · View at PubMed
  34. P. H. Carpentier, “Current techniques for the clinical evaluation of the microcirculation,” Journal des Maladies Vasculaires, vol. 26, no. 2, pp. 142–147, 2001. View at Google Scholar
  35. J. Lee, A. C. Jirapatnakul, A. P. Reeves, W. E. Crowe, and I. H. Sarelius, “Vessel diameter measurement from intravital microscopy,” Annals of Biomedical Engineering, vol. 37, no. 5, pp. 913–926, 2009. View at Publisher · View at Google Scholar · View at PubMed
  36. W. Groner, J. W. Winkelman, A. G. Harris et al., “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nature Medicine, vol. 5, no. 10, pp. 1209–1213, 1999. View at Publisher · View at Google Scholar · View at PubMed
  37. J. Lndert, J. Werner, M. Redlin, H. Kippe, H. Habazettl, and A. R. Pries, “OPS imaging of human circulation: ashort technical report,” Journal of Vascular Research, vol. 39, pp. 368–372, 2002. View at Google Scholar
  38. A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, “Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results,” Anesthesiology, vol. 107, no. 6, pp. 939–945, 2007. View at Publisher · View at Google Scholar · View at PubMed
  39. G. Belcaro, U. Hoffmann, A. Bollinger, and A. Nicolaides, Laser Doppler, Med-Orion Publishing Company, London, UK, 2003.
  40. M. J. Leahy, F. F. M. De Mul, G. E. Nilsson, and R. Maniewski, “Principles and practice of the laser-Doppler perfusion technique,” Technology and Health Care, vol. 7, no. 2-3, pp. 143–162, 1999. View at Google Scholar
  41. C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Investigative Ophthalmology, vol. 11, no. 11, pp. 936–944, 1972. View at Google Scholar
  42. A. Fullerton, M. Stücker, K. P. Wilhelm et al., “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging,” Contact Dermatitis, vol. 46, no. 3, pp. 129–140, 2002. View at Publisher · View at Google Scholar
  43. A. Serov, W. Steenbergen, and F. De Mul, “Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor,” Optics Letters, vol. 27, no. 5, pp. 300–302, 2002. View at Google Scholar
  44. A. Serov, B. Steinacher, and T. Lasser, “Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera,” Optics Express, vol. 13, no. 10, pp. 3681–3689, 2005. View at Publisher · View at Google Scholar
  45. A. Serov and T. Lasser, “High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor,” Optics Express, vol. 13, no. 17, pp. 6416–6428, 2005. View at Publisher · View at Google Scholar
  46. M. J. Joyner, N. M. Dietz, and J. T. Shepherd, “From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs,” Journal of Applied Physiology, vol. 91, no. 6, pp. 2431–2441, 2001. View at Google Scholar
  47. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement, vol. 22, no. 4, pp. R35–R66, 2001. View at Publisher · View at Google Scholar
  48. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Optics Communications, vol. 37, no. 5, pp. 326–330, 1981. View at Google Scholar
  49. J. D. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Optics Communications, vol. 116, no. 1-3, pp. 36–42, 1995. View at Google Scholar
  50. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” Journal of Biomedical Optics, vol. 1, no. 2, pp. 174–179, 1996. View at Google Scholar
  51. J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” in Coherent Optics of Ordered and Random Media, D. A. Zimnyakov, Ed., vol. 4242, pp. 25–39, 2001. View at Google Scholar
  52. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” Journal of Biomedical Optics, vol. 8, no. 3, pp. 559–564, 2003. View at Publisher · View at Google Scholar · View at PubMed
  53. B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, “Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics,” Journal of Biomedical Optics, vol. 11, no. 4, Article ID 041129, 2006. View at Publisher · View at Google Scholar · View at PubMed
  54. R. Nothdurft and G. Yao, “Imaging obscured subsurface inhomogeneity using laser speckle,” Optics Express, vol. 13, no. 25, pp. 10034–10039, 2005. View at Publisher · View at Google Scholar
  55. X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment,” Medical Physics, vol. 29, no. 12, pp. 2799–2805, 2002. View at Publisher · View at Google Scholar
  56. X. Wang, D. L. Chamberland, and D. A. Jamadar, “Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis,” Optics Letters, vol. 32, no. 20, pp. 3002–3004, 2007. View at Publisher · View at Google Scholar
  57. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Optics Letters, vol. 28, no. 19, pp. 1739–1741, 2003. View at Google Scholar
  58. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Optics Letters, vol. 30, no. 6, pp. 625–627, 2005. View at Publisher · View at Google Scholar
  59. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Optics Express, vol. 17, no. 9, pp. 7688–7693, 2009. View at Publisher · View at Google Scholar
  60. D. Yang, D. Xing, Y. Tan, H. Gu, and S. Yang, “Integrative prototype B-scan photoacoustic tomography system based on a novel hybridized scanning head,” Applied Physics Letters, vol. 88, no. 17, Article ID 174101, 2006. View at Publisher · View at Google Scholar
  61. P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf, “Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface,” Physical Review E, vol. 75, no. 4, Article ID 046706, 2007. View at Publisher · View at Google Scholar
  62. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Google Scholar
  63. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-Principles and applications,” Reports on Progress in Physics, vol. 66, no. 2, pp. 239–303, 2003. View at Publisher · View at Google Scholar
  64. W. Drexler and J. G. Fujimoto, Eds., Optical Coherence Tomography: Technology and Applications, Springer, Berlin, Germany, 2008.
  65. N. Tanno, T. Ichikawa, and A. Saeki, “Lightwave reflection measurement,” Japanese Patent no. 2010042, 1990.
  66. S. Chiba and N. Tanno, “Backscattering optical heterodyne tomography,” prepared for the 14th Laser Sensing Symposium, 1991.
  67. J. G. Fujimoto, S. De Silvestri, E. P. Ippen et al., “Femtosecond optical ranging in biological systems,” Optics Letters, vol. 11, pp. 150–152, 1986. View at Google Scholar
  68. B. L. Danielson and C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Applied Optics, vol. 26, pp. 2836–2842, 1987. View at Google Scholar
  69. K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Applied Optics, vol. 26, pp. 1603–1606, 1987. View at Google Scholar
  70. A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Optics Letters, vol. 13, pp. 1867–1869, 1988. View at Google Scholar
  71. C. K. Hitzenberger, W. Drexler, and A. F. Fercher, “Measurement of corneal thickness by laser Doppler interferometry,” Investigative Ophthalmology and Visual Science, vol. 33, no. 1, pp. 98–103, 1992. View at Google Scholar
  72. J. A. Izatt, M. R. Hee, E. A. Swanson et al., “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology, vol. 112, no. 12, pp. 1584–1589, 1994. View at Google Scholar
  73. T. Sawatari, “Optical heterodyne scanning microscope,” Applied Optics, vol. 12, no. 11, pp. 2768–2772, 1973. View at Publisher · View at Google Scholar
  74. J. M. Schmitt, A. Knüttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Applied Optics, vol. 32, no. 30, pp. 6032–6042, 1993. View at Google Scholar
  75. X. Clivaz, F. Marquis-Weible, R. P. Salathé, R. P. Novak, and H. H. Gilgen, “High resolutionrelfectometry in biological tissues,” Optics Letters, vol. 17, pp. 4–6, 1992. View at Google Scholar
  76. G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” Journal of Biomedical Optics, vol. 3, no. 1, pp. 21–31, 1998. View at Google Scholar
  77. E. A. Swanson, J. A. Izatt, M. R. Hee et al., “In vivo retinal imaging by optical coherence tomography,” Optics Letters, vol. 18, no. 21, pp. 1864–1869, 1993. View at Google Scholar
  78. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization sensitive low-coherence reflectometer for birefringence characterization and ranging,” Journal of the Optical Society of America B, vol. 9, pp. 903–908, 1992. View at Google Scholar
  79. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Optics Express, vol. 13, no. 25, pp. 10217–10229, 2005. View at Publisher · View at Google Scholar
  80. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Optics Letters, vol. 27, no. 20, pp. 1803–1805, 2002. View at Google Scholar
  81. B. H. Park, M. C. Pierce, B. Cense et al., “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Optics Express, vol. 13, no. 11, pp. 3931–3944, 2005. View at Publisher · View at Google Scholar
  82. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Polarization contrast imaging of biological tissues by polarization- sensitive Fourier-domain optical coherence tomography,” Applied Optics, vol. 45, no. 6, pp. 1142–1147, 2006. View at Publisher · View at Google Scholar
  83. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Optics Express, vol. 14, no. 14, pp. 6502–6515, 2006. View at Publisher · View at Google Scholar
  84. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Optics Express, vol. 16, no. 8, pp. 5892–5906, 2008. View at Publisher · View at Google Scholar
  85. J. F. De Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Optics Express, vol. 3, no. 6, pp. 212–218, 1998. View at Google Scholar
  86. C. E. Saxer, J. F. De Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Optics Letters, vol. 25, no. 18, pp. 1355–1357, 2000. View at Google Scholar
  87. S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Optics Letters, vol. 27, no. 2, pp. 101–103, 2002. View at Google Scholar
  88. J. Shuliang, Y. Gang, and L. V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography,” Applied Optics, vol. 39, no. 34, pp. 6318–6324, 2000. View at Google Scholar
  89. J. F. De Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Optics Letters, vol. 22, no. 12, pp. 934–936, 1997. View at Google Scholar
  90. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Optics Letters, vol. 22, no. 1, pp. 64–66, 1997. View at Google Scholar
  91. Z. Chen, T. E. Milner, S. Srinivas et al., “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Optics Letters, vol. 22, no. 14, pp. 1119–1121, 1997. View at Google Scholar
  92. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Optics Letters, vol. 22, no. 18, pp. 1439–1441, 1997. View at Google Scholar
  93. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Optics Express, vol. 1, no. 13, pp. 424–431, 1997. View at Google Scholar
  94. M. D. Kulkarni, T. G. Van Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Optics Letters, vol. 23, no. 13, pp. 1057–1059, 1998. View at Google Scholar
  95. Z. Ding, Y. Zhao, H. Ren, J. S. Nelson, and Z. Chen, “Real-time phase-resolved optical coherence tomography and optical Doppler tomography,” Optics Express, vol. 10, no. 5, pp. 236–245, 2002. View at Google Scholar
  96. S. J. Matcher, M. Cope, and D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Applied Optics, vol. 36, no. 1, pp. 386–396, 1997. View at Google Scholar
  97. U. Morgner, W. Drexler, F. X. Kärtner et al., “Spectroscopic optical coherence tomography,” Optics Letters, vol. 25, no. 2, pp. 111–113, 2000. View at Google Scholar
  98. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Optics Letters, vol. 25, no. 11, pp. 820–822, 2000. View at Google Scholar
  99. R. Leitgeb, M. Wojtkowski, C. Hitzenberger, A. Fercher, and H. Sattmann, “Spectroscopic analysis of substances by frequency domain optical coherence tomography,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, vol. 4251 of Proceedings of SPIE, pp. 123–127, 2001. View at Publisher · View at Google Scholar
  100. J. Su, I. V. Tomov, YI. Jiang, and Z. Chen, “High-resolution frequency-domain second-harmonic optical coherence tomography,” Applied Optics, vol. 46, no. 10, pp. 1770–1775, 2007. View at Publisher · View at Google Scholar
  101. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Spectral domain second-harmonic optical coherence tomography,” Optics Letters, vol. 30, no. 18, pp. 2391–2393, 2005. View at Publisher · View at Google Scholar
  102. B. R. White, M. C. Pierce, N. Nassif et al., “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical doppler tomography,” Optics Express, vol. 11, no. 25, pp. 3490–3497, 2003. View at Google Scholar
  103. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Optics Express, vol. 11, no. 23, pp. 3116–3121, 2003. View at Google Scholar
  104. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger et al., “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Optics Letters, vol. 29, no. 2, pp. 171–173, 2004. View at Publisher · View at Google Scholar
  105. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Optics Express, vol. 14, no. 17, pp. 7821–7840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. De Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters, vol. 25, no. 2, pp. 114–116, 2000. View at Google Scholar · View at Scopus
  107. R. K. Wang, “High-resolution visualization of fluid dynamics with Doppler optical coherence tomography,” Measurement Science and Technology, vol. 15, no. 4, pp. 725–733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. V. Gusmeroli and M. Martinelli, “Distributed laser Doppler velocimeter,” Optics Letters, vol. 16, pp. 1358–1360, 1991. View at Google Scholar
  109. F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Processing Magazine, vol. 9, no. 2, pp. 21–67, 1992. View at Publisher · View at Google Scholar · View at Scopus
  110. Z. Chen, T. E. Milner, S. Srinivas et al., “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Optics Letters, vol. 22, no. 14, pp. 1119–1121, 1997. View at Google Scholar
  111. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. De Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Optics Letters, vol. 25, no. 2, pp. 1358–1360, 2000. View at Google Scholar
  112. Y. Zhao, Z. Chen, C. Saxer et al., “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Optics Letters, vol. 25, no. 18, pp. 1358–1360, 2000. View at Google Scholar · View at Scopus
  113. V. X. D. Yang, M. L. Gordon, and B. Qi, “High speed, wide velocity dynamic range Doppler optical coherence omography—part I: system design, signal processing, and performance characterization,” Optics Express, vol. 11, pp. 794–809, 2003. View at Google Scholar
  114. V. X. D. Yang, M. L. Gordon, E. Seng-Yue et al., “High speed, wide velocity dynamic range doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of Xenopus laevis,” Optics Express, vol. 11, no. 14, pp. 1650–1658, 2003. View at Google Scholar · View at Scopus
  115. V. X. D. Yang, M. L. Gordon, S. J. Tang et al., “High speed, wide velocity dynamic range doppler optical coherence tomography (part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Optics Express, vol. 11, no. 19, pp. 2416–2424, 2003. View at Google Scholar · View at Scopus
  116. J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography,” Journal of Biomedical Optics, vol. 9, no. 5, pp. 982–994, 2004. View at Publisher · View at Google Scholar · View at PubMed
  117. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express, vol. 11, no. 18, pp. 2183–2189, 2003. View at Google Scholar
  118. J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Optics Letters, vol. 28, no. 21, pp. 2067–2069, 2003. View at Google Scholar
  119. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Optics Express, vol. 11, no. 8, pp. 889–894, 2003. View at Google Scholar
  120. J. K. Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology, vol. 198, no. 4, pp. 355–361, 1999. View at Publisher · View at Google Scholar
  121. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography,” Archives of Ophthalmology, vol. 121, no. 2, pp. 235–239, 2003. View at Google Scholar
  122. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography,” Optics Letters, vol. 25, no. 19, pp. 1448–1450, 2000. View at Google Scholar
  123. J. Zhang and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Optics Express, vol. 13, no. 19, pp. 7449–7457, 2005. View at Publisher · View at Google Scholar
  124. B. J. Vakoc, S. H. Yun, J. F. De Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Optics Express, vol. 13, no. 14, pp. 5483–5493, 2005. View at Publisher · View at Google Scholar
  125. L. Wang, Y. Wang, S. Guo et al., “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Optics Communications, vol. 242, no. 4–6, pp. 345–350, 2004. View at Publisher · View at Google Scholar
  126. S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Optics Express, vol. 13, no. 2, pp. 410–416, 2005. View at Publisher · View at Google Scholar
  127. S. H. Yun, G. J. Tearney, J. F. De Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Optics Express, vol. 12, no. 13, pp. 2977–2998, 2004. View at Publisher · View at Google Scholar
  128. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Optics Letters, vol. 31, no. 20, pp. 3001–3003, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant doppler flow imaging and optical vivisection of retinal blood vessels,” Optics Express, vol. 15, no. 2, pp. 408–422, 2007. View at Google Scholar
  130. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time domain optical coherence tomography,” Optics Express, vol. 16, no. 9, pp. 6008–6025, 2008. View at Publisher · View at Google Scholar
  131. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Optics Express, vol. 15, no. 7, pp. 4083–4097, 2007. View at Publisher · View at Google Scholar
  132. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength,” Optics Express, vol. 15, no. 18, pp. 11402–11412, 2007. View at Publisher · View at Google Scholar
  133. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Optics Express, vol. 16, no. 15, pp. 11438–11452, 2008. View at Publisher · View at Google Scholar
  134. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Optics Express, vol. 17, no. 11, pp. 8926–8940, 2009. View at Publisher · View at Google Scholar
  135. L. An, H. M. Subhash, D. J. Wilson, and R. K. Wang, “High resolution wide-field imaging of retinal and choroidal blood perfusion with optical micro-angiography,” Journal of Biomedical Optics, vol. 15, no. 2, 2010. View at Google Scholar
  136. R. K. Wang and H. M. Subhash, “Optical microangiography: high-resolution 3-D imaging of blood flow,” Optics and Photonics News, vol. 20, no. 11, pp. 40–46, 2009. View at Publisher · View at Google Scholar
  137. R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” Journal of Biomedical Optics, vol. 15, no. 2, 2010. View at Google Scholar
  138. Y. Jia and R. K. Wang, “Optical micro-angiography images structural and functional cerebral blood perfusion in mice with cranium left intact,” Journal of Biophotonics, vol. 4, no. 1-2, pp. 57–63, 2011. View at Publisher · View at Google Scholar · View at PubMed
  139. R. K. Wang, “Directional blood flow imaging in volumetric optical microangiography achieved by digital frequency modulation,” Optics Letters, vol. 33, no. 16, pp. 1878–1880, 2008. View at Publisher · View at Google Scholar
  140. Z. Yuan, Z. C. Luo, H. G. Ren, C. W. Du, and Y. Pan, “A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography,” Optics Express, vol. 17, no. 5, pp. 3951–3963, 2009. View at Publisher · View at Google Scholar
  141. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed., vol. 9 of Topics in Applied Physics, Springer, New York, NY, USA, 1984. View at Google Scholar
  142. A. Mariampillai, B. A. Standish, E. H. Moriyama et al., “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Optics Letters, vol. 33, no. 13, pp. 1530–1532, 2008. View at Publisher · View at Google Scholar
  143. H. M. Subhash, V. Davila, H. Sun et al., “Volumetric in vivo imaging of microvascular perfusion within the intact cochlea in mice using ultra-high sensitive optical microangiography,” IEEE Transactions on Medical Imaging, vol. 30, no. 2, pp. 224–230, 2011. View at Publisher · View at Google Scholar · View at PubMed
  144. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics, vol. 4, no. 1, pp. 95–105, 1999. View at Google Scholar
  145. J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Optics Express, vol. 13, no. 14, pp. 5234–5239, 2005. View at Publisher · View at Google Scholar
  146. H. Fujii, T. Asakura, and K. Nohira, “Blood flow observed by time-varying laser speckle,” Optics Letters, vol. 10, no. 3, pp. 104–106, 1985. View at Google Scholar
  147. J. Fingier, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Optics Express, vol. 15, no. 20, pp. 12636–12653, 2007. View at Publisher · View at Google Scholar
  148. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraserl, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Optics Express, vol. 17, no. 24, pp. 22190–22200, 2009. View at Publisher · View at Google Scholar
  149. A. Mariampillai, M. K. K. Leung, M. Jarvi et al., “Optimized speckle variance OCT imaging of microvasculature,” Optics Letters, vol. 35, no. 8, pp. 1257–1259, 2010. View at Publisher · View at Google Scholar
  150. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen et al., “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Optics Letters, vol. 35, no. 1, pp. 43–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Optics Express, vol. 18, no. 8, pp. 8220–8228, 2010. View at Publisher · View at Google Scholar · View at Scopus