Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2011 (2011), Article ID 581810, 7 pages
Research Article

Maximization of Gain in Slow-Light Silicon Raman Amplifiers

1Advanced Computing and Simulation Laboratory, Monash University, Clayton, VIC 3800, Australia
2The Institute of Optics, University of Rochester, Rochester, NY 14627, USA

Received 12 February 2011; Accepted 26 April 2011

Academic Editor: Kazumi Wada

Copyright © 2011 Ivan D. Rukhlenko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We theoretically study the problem of Raman gain maximization in uniform silicon photonic-crystal waveguides supporting slow optical modes. For the first time, an exact solution to this problem is obtained within the framework of the undepleted-pump approximation. Specifically, we derive analytical expressions for the maximum signal gain, optimal input pump power, and optimal length of a silicon Raman amplifier and demonstrate that the ultimate gain is achieved when the pump beam propagates at its maximum speed. If the signal’s group velocity can be reduced by a factor of 10 compared to its value in a bulk silicon, it may result in ultrahigh gains exceeding 100 dB. We also optimize the device parameters of a silicon Raman amplifier in the regime of strong pump depletion and come up with general design guidelines that can be used in practice.