Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2011, Article ID 629605, 9 pages
http://dx.doi.org/10.1155/2011/629605
Research Article

Higher-Order Amplitude Squeezing in Six-Wave Mixing Process

1Department of Applied Physics, Shri Krishan Institute of Engineering & Technology, Kurukshetra 136118, India
2Department of Physics, Markanda National College, Shahbad, Kurukshetra 136118, India
3Department of Physics, Kurukshetra University, Kurukshetra 136119, India

Received 28 April 2010; Accepted 11 April 2011

Academic Editor: A. Cartaxo

Copyright © 2011 Sunil Rani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Mandel, “Squeezing and photon antibunching in harmonic generation,” Optics Communications, vol. 42, no. 6, pp. 437–439, 1982. View at Google Scholar · View at Scopus
  2. M. Hillery, “Squeezing of the square of the field amplitude in second harmonic generation,” Optics Communications, vol. 62, no. 2, pp. 135–138, 1987. View at Google Scholar · View at Scopus
  3. C. K. Hong and L. Mandel, “Generation of higher-order squeezing of quantum electromagnetic fields,” Physical Review A, vol. 32, no. 2, pp. 974–982, 1985. View at Publisher · View at Google Scholar · View at Scopus
  4. C. K. Hong and L. Mandel, “Higher-order squeezing of a quantum field,” Physical Review Letters, vol. 54, no. 4, pp. 323–325, 1985. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. B. Zhan, “Amplitude-cubed squeezing in harmonic generations,” Physics Letters A, vol. 160, no. 6, pp. 498–502, 1991. View at Google Scholar · View at Scopus
  6. J. Lal and R. M. P. Jaiswal, “Amplitude-cubed squeezing in Kth harmonic generation,” Indian Journal of Pure and Applied Physics, vol. 36, no. 9, pp. 481–484, 1998. View at Google Scholar · View at Scopus
  7. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Physical Review D, vol. 23, no. 8, pp. 1693–1708, 1981. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Buonanno and Y. Chen, “Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers,” Physical Review D, vol. 69, no. 10, Article ID 102004, 29 pages, 2004. View at Publisher · View at Google Scholar
  9. K. McKenzie, B. C. Buchler, D. A. Shaddock, P. K. Lam, and D. E. McClelland, “Analysis of a sub-shot-noise power recycled Michelson interferometer,” Classical and Quantum Gravity, vol. 21, no. 5, pp. S1037–S1043, 2004. View at Google Scholar · View at Scopus
  10. K. Goda, O. Miyakawa, E. E. Mikhailov et al., “A quantum-enhanced prototype gravitational-wave detector,” Nature Physics, vol. 4, no. 6, pp. 472–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. P. Yuen and J. H. Shapiro, “Optical communication with two photon coherent states—part I: quantum state propagation and quantum noise,” IEEE Transactions on Information Theory, vol. 24, no. 6, pp. 657–668, 1978. View at Google Scholar · View at Scopus
  12. N. Treps, N. Grosse, W. P. Bowen et al., “Nano-displacement measurements using spatially multimode squeezed light,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, no. 8, pp. S664–S674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. T. L. Hsu, V. Delaubert, W. P. Bowen, C. Fabre, H. A. Bachor, and P. K. Lam, “A quantum study of multibit phase coding for optical storage,” IEEE Journal of Quantum Electronics, vol. 42, no. 10, pp. 1001–1007, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Eberle, S. Steinlechner, J. Bauchrowitz et al., “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Physical Review Letters, vol. 104, no. 25, Article ID 251102, 4 pages, 2010. View at Publisher · View at Google Scholar
  15. M. Mehmet, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Demonstration of a quantum-enhanced fiber Sagnac interferometer,” Optics Letters, vol. 35, no. 10, pp. 1665–1667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Peřina, V. Peřinová, C. Sibilia, and M. Bertolotti, “Quantum statistics of four-wave mixing,” Optics Communications, vol. 49, no. 4, pp. 285–289, 1984. View at Google Scholar
  17. R. Loudon, “Squeezing in two-photon absorption,” Optics Communications, vol. 49, no. 1, pp. 67–70, 1984. View at Google Scholar · View at Scopus
  18. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Physical Review Letters, vol. 55, no. 22, pp. 2409–2412, 1985. View at Publisher · View at Google Scholar · View at Scopus
  19. D. K. Giri and P. S. Gupta, “Short-time squeezing effects in spontaneous and stimulated six-wave mixing process,” Optics Communications, vol. 221, no. 1–3, pp. 135–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. K. Giri and P. S. Gupta, “The squeezing of radiation in four-wave mixing processes,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, no. 1, pp. 91–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Rani, J. Lal, and N. Singh, “Squeezing and photon statistical effects in spontaneous and stimulated eight-wave mixing process,” Optical and Quantum Electronics, vol. 39, no. 2, pp. 157–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. S. Kanter and P. Kumar, “Enhancement of bright squeezing in the second harmonic by internally seeding the χ(2) interaction,” IEEE Journal of Quantum Electronics, vol. 36, no. 8, pp. 916–922, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Sizmann, R. J. Horowicz, G. Wagner, and G. Leuchs, “Observation of amplitude squeezing of the up-converted mode in second harmonic generation,” Optics Communications, vol. 80, no. 2, pp. 138–142, 1990. View at Google Scholar · View at Scopus
  24. S. T. Gevorkyan, G. Y. Kryuchkyan, and K. V. Kheruntsyan, “Noise, instability and squeezing in third harmonic generation,” Optics Communications, vol. 134, no. 1–6, pp. 440–446, 1997. View at Google Scholar · View at Scopus
  25. J. Lal and R. M. P. Jaiswal, “Amplitude squared squeezing and photon statistics in second and third harmonic generations,” Indian Journal of Physics, vol. 72, pp. 637–642, 1998. View at Google Scholar
  26. J. Lal and R. M. P. Jaiswal, “Generation of amplitude-squared squeezed states by combination of up and down degenerate parametric processes,” Indian Journal of Pure and Applied Physics, vol. 36, no. 8, pp. 415–418, 1998. View at Google Scholar · View at Scopus
  27. A. Kumar and P. S. Gupta, “Short-time squeezing in spontaneous Raman and stimulated Raman scattering,” Quantum and Semiclassical Optics, vol. 7, no. 5, article 5, pp. 835–841, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Kumar and P. S. Gupta, “Higher-order amplitude squeezing in hyper-Raman scattering under short-time approximation,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 8, no. 5, pp. 1053–1060, 1996. View at Google Scholar · View at Scopus
  29. K. Kim, “Higher order sub-Poissonian,” Physics Letters, Section A, vol. 245, no. 1-2, pp. 40–42, 1998. View at Google Scholar · View at Scopus
  30. D. Erenso, R. Vyas, and S. Singh, “Higher-order sub-Poissonian photon statistics in terms of factorial moments,” Journal of the Optical Society of America B, vol. 19, no. 6, pp. 1471–1475, 2002. View at Google Scholar · View at Scopus
  31. H. Prakash and D. K. Mishra, “Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing and amplitude-squared squeezing,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 39, no. 9, article 14, pp. 2291–2297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Prakash and P. Kumar, “Equivalence of second-order sub-Poissonian statistics and fourth-order squeezing for intense light,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 7, no. 12, pp. S786–S788, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Prakesh and D. K. Mishra, “Corrigendum to Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing and amplitude-squared squeezing,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 40, no. 12, article C01, pp. 2531–2532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. K. Giri and P. S. Gupta, “Higher-order squeezing of the electromagnetic field in spontaneous and stimulated Raman processes,” Journal of Modern Optics, vol. 52, no. 12, pp. 1769–1781, 2005. View at Publisher · View at Google Scholar · View at Scopus