Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012 (2012), Article ID 148985, 12 pages
http://dx.doi.org/10.1155/2012/148985
Review Article

Coupling Schemes in Terahertz Planar Metamaterials

1Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA

Received 2 October 2011; Accepted 2 December 2011

Academic Editor: Zhaolin Lu

Copyright © 2012 Dibakar Roy Chowdhury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999. View at Google Scholar · View at Scopus
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Physical Review Letters, vol. 96, no. 10, Article ID 107401, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597–600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. T. Chen, J. F. O'Hara, A. K. Azad et al., “Experimental demonstration of frequency-agile terahertz metamaterials,” Nature Photonics, vol. 2, no. 5, pp. 295–298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Physical Review Letters, vol. 103, no. 14, Article ID 147401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Tian, R. Singh, J. Han et al., “Terahertz superconducting plasmonic hole array,” Optics Letters, vol. 35, no. 21, pp. 3586–3588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Driscoll, H. T. Kim, B. G. Chae et al., “Memory metamaterials,” Science, vol. 325, no. 5947, pp. 1518–1521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Optics Express, vol. 18, no. 13, pp. 13425–13430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Gu, R. Singh, Z. Tian et al., “Terahertz superconductor metamaterial,” Applied Physics Letters, vol. 97, no. 7, Article ID 071102, 2010. View at Publisher · View at Google Scholar
  14. B. Jin, C. Zhang, S. Engelbrecht et al., “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Optics Express, vol. 18, no. 16, pp. 17504–17509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. T. Chen, H. Yang, R. Singh et al., “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Physical Review Letters, vol. 105, no. 24, Article ID 247402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. -T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Optics Letters, vol. 36, no. 7, pp. 1230–1232, 2011. View at Publisher · View at Google Scholar
  17. R. Singh, J. Xiong, A. K. Azad et al., “Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,” Nanophotonics. In press, http://arxiv.org/abs/1111.3917.
  18. S. Y. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Applied Physics Letters, vol. 97, no. 19, Article ID 191906, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. N.-H. Shen, M. Massaouti, M. Gokkavas et al., “Optically implemented broadband blueshift switch in the terahertz regime,” Physical Review Letters, vol. 106, no. 3, Article ID 037403, 2011. View at Publisher · View at Google Scholar
  20. D. Roy Chowdhury, R. Singh, J. F. O'Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Applied Physics Letters, vol. 99, no. 23, Article ID 231101, 2011. View at Publisher · View at Google Scholar
  21. J. Gu, R. Singh, A. K. Azad et al., “An active hybrid plasmonic metamaterial,” Optical Materials Express, vol. 2, Article ID 1617, 2011, http://www.opticsinfobase.org/ome/abstract.cfm?uri=ome-2-1-31. View at Google Scholar
  22. H.-T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser & Photonics Reviews, vol. 5, no. 4, pp. 513–533, 2011. View at Publisher · View at Google Scholar
  23. R. Singh, A. K. Azad, J. F. O'Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Optics Letters, vol. 33, no. 13, pp. 1506–1508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. R. Chowdhury, R. Singh, M. Reiten et al., “A broadband planar terahertz metamaterial with nested structure,” Optics Express, vol. 19, no. 17, pp. 15817–15823, 2011. View at Publisher · View at Google Scholar
  25. J. F. O'Hara, R. Singh, I. Brener et al., “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Optics Express, vol. 16, no. 3, pp. 1786–1795, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. I. A.I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Applied Physics Letters, vol. 93, no. 8, Article ID 083507, 2008. View at Publisher · View at Google Scholar
  27. R. Singh, E. Smirnova, A. J. Taylor, J. F. O'Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Optics Express, vol. 16, no. 9, pp. 6537–6543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics Journal, vol. 1, p. 99, 2009, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5130235. View at Google Scholar
  29. D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O'Hara, “Tailored resonator coupling for modifying the terahertz metamaterial response,” Optics Express, vol. 19, no. 11, pp. 10679–10685, 2011. View at Publisher · View at Google Scholar
  30. F. Hesmer, E. Tatartschuk, O. Zhuromskyy et al., “Coupling mechanisms for split ring resonators: theory and experiment,” Physica Status Solidi B, vol. 244, no. 4, pp. 1170–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. S. Penciu, K. Aydin, M. Kafesaki et al., “Multi-gap individual and coupled split-ring resonator structures,” Optics Express, vol. 16, no. 22, pp. 18131–18144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Physical Review Letters, vol. 103, no. 21, Article ID 213902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Singh, I. A.I. Al-Naib, Y. Yang et al., “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Applied Physics Letters, vol. 99, no. 20, Article ID 201107, 2011. View at Publisher · View at Google Scholar
  34. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Advanced Materials, vol. 20, no. 23, pp. 4521–4525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Physical Review B, vol. 79, no. 8, Article ID 085111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Feth, M. König, M. Husnik et al., “Electromagnetic interaction of split-ring resonators: the role of separation and relative orientation,” Optics Express, vol. 18, no. 7, pp. 6545–6554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “The impact of nearest neighbor interaction on the resonances in terahertz metamaterials,” Applied Physics Letters, vol. 94, no. 2, Article ID 021116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Bitzer, J. Wallauer, H. Helm, H. Merbold, T. Feurer, and M. Walther, “Lattice modes mediate radiative coupling in metamaterial arrays,” Optics Express, vol. 17, no. 24, pp. 22108–22113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Applied Physics Letters, vol. 97, no. 24, Article ID 241108, 2010. View at Publisher · View at Google Scholar
  40. J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, “Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study,” Optics Express, vol. 19, no. 18, pp. 17283–17292, 2011. View at Publisher · View at Google Scholar
  41. D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Physical Review B, vol. 82, no. 15, Article ID 155128, 2010. View at Publisher · View at Google Scholar
  42. R. Singh, I. A.I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Optics Express, vol. 19, no. 7, pp. 6312–6319, 2011. View at Publisher · View at Google Scholar
  43. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” Journal of the Optical Society of America B, vol. 7, p. 2006, 1990, http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-7-10-2006. View at Google Scholar
  44. Computer Simulation Technology (CST), Darmstadt, Germany.
  45. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Physical Review Letters, vol. 101, no. 8, Article ID 087403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Rockstuhl, T. Zentgraf, C. Etrich, J. Kuhl, F. Lederer, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Optics Express, vol. 14, no. 19, pp. 8827–8836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” Journal of the Optical Society of America A, vol. 14, no. 10, pp. 2758–2767, 1997. View at Google Scholar
  48. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Physical Review B, vol. 80, no. 4, Article ID 041102, 2009. View at Publisher · View at Google Scholar
  49. C. Helgert, C. Rockstuhl, C. Etrich et al., “Effective properties of amorphous metamaterials,” Physical Review B, vol. 79, Article ID 233107, 4 pages, 2009. View at Publisher · View at Google Scholar
  50. R. Singh, X. Lu, J. Gu, Z. Tian, and W. Zhang, “Random terahertz metamaterials,” Journal of Optics A, vol. 12, no. 1, Article ID 015101, 2010. View at Publisher · View at Google Scholar
  51. G. Acuna, S. F. Heucke, F. Kuchler, H. T. Chen, A. J. Taylor, and R. Kersting, “Surface plasmons in terahertz metamaterials,” Optics Express, vol. 16, no. 23, pp. 18745–18751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Optics Letters, vol. 31, no. 5, pp. 634–636, 2006. View at Publisher · View at Google Scholar