Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012 (2012), Article ID 157319, 12 pages
Review Article

Manipulating the Propagation of Solitons with Solid-Core Photonic Bandgap Fibers

Laboratoire PhLAM, UMR CNRS 8523, IRCICA, Université Lille 1, 59655 Villeneuve d'Ascq Cedex, France

Received 7 April 2011; Accepted 20 June 2011

Academic Editor: Miguel González Herráez

Copyright © 2012 O. Vanvincq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We review the dynamics of soliton self-frequency shift induced by Raman gain in special solid-core photonic bandgap fibers and its consequences in terms of supercontinuum generation. These photonic bandgap fibers have been designed to allow nonlinear experiments in the first bandgap without suffering from significant loss even when working close to the photonic bandgap edge. We studied experimentally, numerically, and analytically the extreme deceleration of the soliton self-frequency shift at the long-wavelength edge of the first transmission window. This phenomenon is interpreted as being due to a large variation of the group-velocity dispersion in this spectral range and has been obtained with no significant power loss. Then, we investigated experimentally and numerically the generation of supercontinuum in this kind of fibers, in both spectral and temporal domains. In particular, we demonstrated an efficient tailoring of the supercontinuum spectral extension as well as a strong noise reduction at its long-wavelength edge.