Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012, Article ID 260709, 7 pages
http://dx.doi.org/10.1155/2012/260709
Research Article

Effect of Fluorescent Particle Size on the Modulation Efficiency of Ultrasound-Modulated Fluorescence

1Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019, USA
2Joint Biomedical Engineering Program, The University of Texas at Arlington, and The University of Texas Southwestern Medical Center at Dallas, TX 75390, USA
3Department of Mechanical Engineering, The Catholic University of America, Washington, DC 20064, USA

Received 15 July 2011; Revised 15 September 2011; Accepted 15 September 2011

Academic Editor: Nanguang Chen

Copyright © 2012 Yuan Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Cai and X. Chen, “Multimodality molecular imaging of tumor angiogenesis,” Journal of Nuclear Medicine, vol. 49, supplement 2, pp. 113S–128S, 2008. View at Google Scholar · View at Scopus
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Speinger, Berlin, Germany, 3rd edition, 2006.
  3. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nature Photonics, vol. 3, no. 9, pp. 503–509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Culver, W. Akers, and S. Achilefu, “Multimodality molecular imaging with combined optical and SPECT/PET modalities,” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 169–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Yuan, “Theoretical study of ultrasound-modulated fluorescence photon waves in turbid media,” in Diffuse Optical Tomography and Fluorescence Diffuse Optical Tomography, PhD Dissertation, chapter 6, University of Connecticut, Connecticut, RI, USA, 2006. View at Google Scholar
  6. Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Applied Physics Letters, vol. 93, no. 1, Article ID 011111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. W. Murray, L. Sui, G. Maguluri et al., “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Optics Letters, vol. 29, no. 21, pp. 2509–2511, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Rousseau, A. Blouin, and J.-P. Monchalin, “Ultrasound-modulated optical imaging using a powerful long pulse laser,” Optics Express, vol. 16, no. 17, pp. 12577–12590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Physical Review Letters, vol. 87, no. 4, Article ID 043903, 2001. View at Google Scholar · View at Scopus
  10. B. Yuan, J. Gamelin, and Q. Zhu, “Mechanisms of the ultrasonic modulation of fluorescence in turbid media,” Journal of Applied Physics, vol. 104, no. 10, Article ID 103102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kobayashi, T. Mizumoto, Y. Shibuya, M. Enomoto, and M. Takeda, “Fluorescence tomography in turbid media based on acousto-optic modulation imaging,” Applied Physics Letters, vol. 89, no. 18, Article ID 181102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Yuan, Y. Liu, P. M. Mehl, and J. Vignola, “Microbubble-enhanced ultrasound-modulated fluorescence in a turbid medium,” Applied Physics Letters, vol. 95, no. 18, Article ID 181113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Yuan and Y. Liu, “Ultrasound-modulated fluorescence from rhodamine B aqueous solution,” Journal of Biomedical Optics, vol. 15, no. 2, Article ID 021321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. J. Hall, U. Sunar, and S. Farshchi-Heydari, “Quadrature detection of ultrasound-modulated photons with a gain-modulated, image-intensified, CCD camera,” The Open Optics Journal, vol. 2, pp. 75–78, 2008. View at Google Scholar
  15. D. J. Hall, M. J. Hsu, S. Esener, and R. F. Mattrey, “Detection of ultrasound-modulated photons and enhancement with ultrasound microbubbles,” Proceedings of SPIE, vol. 7190, article 71900L, 2009. View at Publisher · View at Google Scholar
  16. J. H. Shin, Y. Jiang, B. Grabowski, J. Hurwitz, and Z. Kelman, “Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases,” The Journal of Biological Chemistry, vol. 278, no. 49, pp. 49053–49062, 2003. View at Google Scholar · View at Scopus
  17. H. Li, S. H. Park, J. H. Reif, T. H. LaBean, and H. Yan, “DNA-templated self-assembly of protein and nanoparticle linear arrays,” Journal of the American Chemical Society, vol. 126, no. 2, pp. 418–419, 2004. View at Publisher · View at Google Scholar · View at Scopus