Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012, Article ID 263828, 7 pages
http://dx.doi.org/10.1155/2012/263828
Research Article

Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

1XLIM, UMR CNRS 6172, Université de Limoges, 123 av A. Thomas, 87060 Limoges, France
2Dipartimento di Ingegneria dell'Informazione, Università di Brescia, Via Branze 38, 25123 Brescia, Italy

Received 8 July 2011; Accepted 5 September 2011

Academic Editor: Christophe Finot

Copyright © 2012 Katarzyna Krupa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 3, pp. 538–547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Slavík, F. Parmigiani, J. Kakande et al., “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nature Photonics, vol. 4, no. 10, pp. 690–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 3, pp. 506–520, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Optics Express, vol. 14, no. 20, pp. 8995–8999, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Provo, S. Murdoch, J. D. Harvey, and D. Méchin, “Bragg scattering in a positive β4 fiber,” Optics Letters, vol. 35, no. 22, pp. 3730–3732, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Yan and C. Yang, “Four-wave mixing between coherent signal and incoherent pump light in nonlinear fiber,” Journal of Lightwave Technology, vol. 27, no. 22, pp. 4954–4959, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Nodop, D. Schimpf, J. Limpert, and A. Tünnermann, “SBS suppression in high power fiber pulse amplifiers employing a superluminescence diode as seed source,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO EUROPE '11), Munich, Germany, May 2011, paper CJ7.6 THU.
  8. A. H. Gnauck, R. M. Jopson, C. J. McKinstrie, J. C. Centanni, and S. Radic, “Demonstration of low-noise frequency conversion by Bragg Scattering in a Fiber,” Optics Express, vol. 14, no. 20, pp. 8989–8994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Radic, R. M. Jopson, A. Gnauck, C. J. McKinstrie, J. C. Centanni, and A. R. Chaplyvy, “Stimulated-brillouin-scattering supression using a single modulator in two-pump parametric architectures,” in Proceedings of the Optical Fiber Communication Conference (OFC '05), Anaheim, Calif, USA, March 2005, paper OWN5.
  10. J. Schröder, A. Boucon, S. Coen, and T. Sylvestre, “Interplay of four-wave mixing processes with a mixed coherent-incoherent pump,” Optics Express, vol. 18, no. 25, pp. 25833–25838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Physical Review Letters, vol. 105, no. 11, Article ID 093604, 2010. View at Google Scholar
  12. Y. Yan and Y. Changxi, “Coherent light wave generated from incoherent pump light in nonlinear kerr medium,” Journal of the Optical Society of America B, vol. 26, no. 11, pp. 2059–2063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. G. Chatellus and J.-P. Pique, “Coherence properties of modeless lasers,” in Proceedings of the Science, Quantum of Quasars Workshop, Grenoble, France, December 2009.
  14. L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Coherence in the output spectrum of frequency shifted feedback lasers,” Optics Communications, vol. 282, no. 2, pp. 300–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. P. Yatsenko, B. W. Shore, and K. Bergmann, “An intuitive picture of the physics underlying optical ranging using frequency shifted feedback lasers seeded by a phase-modulated field,” Optics Communications, vol. 282, no. 11, pp. 2212–2216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. A. Champert, V. Couderc, and A. Barthélémy, “1.5-2.0-μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source,” IEEE Photonics Technology Letters, vol. 16, no. 11, pp. 2445–2447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Nakamura, T. Miyahara, and H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Applied Physics Letters, vol. 72, no. 21, pp. 2631–2633, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Stellpflug, G. Bonnet, B. W. Shore, and K. Bergmann, “Dynamics of frequency shifted feedback lasers: Simulation studies,” Optics Express, vol. 11, no. 17, pp. 2060–2080, 2003. View at Google Scholar · View at Scopus
  19. B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technology Letters, vol. 18, no. 17, pp. 1825–1827, 2006. View at Publisher · View at Google Scholar · View at Scopus