Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012 (2012), Article ID 502930, 19 pages
http://dx.doi.org/10.1155/2012/502930
Review Article

Gap Nanoantennas toward Molecular Plasmonic Devices

1CINaM-CNRS, Campus de Luminy, 13288 Marseille, France
2Department of Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
3ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Castelldefels, 08860 Barcelona, Spain
4ICREA—Institucío Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain

Received 30 September 2011; Revised 16 December 2011; Accepted 16 December 2011

Academic Editor: Ali Passian

Copyright © 2012 Aude L. Lereu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics, vol. 1, pp. 438–483, 2009. View at Google Scholar
  2. L. Novotny and N. F. van Hulst, “Antennas for light,” Nature Photonics, vol. 5, pp. 83–90, 2011. View at Google Scholar
  3. C. Girard and E. Dujardin, “Near-field optical properties of top-down and bottom-up nanostructures,” Journal of Optics A, vol. 8, supplement 4, pp. S73–S86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Physical Review Letters, vol. 97, no. 20, Article ID 206806, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Girard, “Near fields in nanostructures,” Reports on Progress in Physics, vol. 68, no. 8, pp. 1883–1933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” Journal of Applied Physics, vol. 98, no. 1, Article ID 011101, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Cang, A. Labno, C. Lu et al., “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature, vol. 469, no. 7330, pp. 385–388, 2011. View at Publisher · View at Google Scholar
  8. P. Ghenuche, R. Quidant, and G. Badenes, “Cumulative plasmon field enhancement in finite metal particle chains,” Optics Letters, vol. 30, no. 14, pp. 1882–1884, 2005. View at Google Scholar · View at Scopus
  9. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” Journal of Physical Chemistry B, vol. 109, no. 27, pp. 13214–13220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Imura, T. Nagahara, and H. Okamoto, “Photoluminescence from gold nanoplates induced by near-field two-photon absorption,” Applied Physics Letters, vol. 88, no. 2, Article ID 023104, pp. 1–3, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Applied physics: resonant optical antennas,” Science, vol. 308, no. 5728, pp. 1607–1609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Physical Review Letters, vol. 94, no. 1, Article ID 017402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Letters, vol. 6, no. 3, pp. 355–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Applied Physics Letters, vol. 90, no. 14, Article ID 143105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. E. Talley, J. B. Jackson, C. Oubre et al., “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Letters, vol. 5, no. 8, pp. 1569–1574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced raman scattering of single rhodamine 6G molecules,” Journal of Physical Chemistry B, vol. 104, no. 50, pp. 11965–11971, 2000. View at Google Scholar · View at Scopus
  17. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Physical Review Letters, vol. 91, no. 22, Article ID 227402, 4 pages, 2003. View at Google Scholar · View at Scopus
  18. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, 2006.
  19. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annual Review of Physical Chemistry, vol. 57, pp. 303–331, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Novotny, “Effective wavelength scaling for optical antennas,” Physical Review Letters, vol. 98, no. 26, Article ID 266802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Hartschuh, M. R. Beversluis, A. Bouhelier, and L. Novotny, “Tip-enhanced optical spectroscopy,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1817, pp. 807–819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angewandte Chemie, vol. 47, no. 43, pp. 8178–8191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chemical Society Reviews, vol. 37, no. 5, pp. 921–930, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” Journal of Physics D, vol. 41, no. 1, Article ID 013001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. L. Lereu, A. Passian, and P. Dumas, “Near field optical microscopy: a brief review,” International Journal of Nanotechnology, vol. 8, 2011. View at Google Scholar
  26. S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Applied Physics Letters, vol. 85, no. 2, pp. 182–184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Applied Physics Letters, vol. 86, no. 14, Article ID 143501, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science, vol. 311, no. 5758, pp. 189–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light-emitting diodes using surface plasmons,” Applied Physics Letters, vol. 88, no. 16, Article ID 161102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Sun, J. B. Khurgin, and R. A. Soref, “Plasmonie light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” Journal of the Optical Society of America B, vol. 25, no. 10, pp. 1748–1755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Ball, “Let there be light,” Nature, vol. 409, no. 6823, pp. 974–976, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Corkish, M. A. Green, and T. Puzzer, “Solar energy collection by antennas,” Solar Energy, vol. 73, no. 6, pp. 395–401, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. P. J. Burke, S. Li, and Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Transactions on Nanotechnology, vol. 5, no. 4, Article ID 1652847, pp. 314–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Kempa, J. Rybczynski, Z. Huang et al., “Carbon nanotubes as optical antennae,” Advanced Materials, vol. 19, no. 3, pp. 421–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics, vol. 101, no. 9, Article ID 093105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Applied Physics Letters, vol. 93, no. 12, Article ID 121904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” Journal of Applied Physics, vol. 101, no. 10, Article ID 104309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Applied Physics Letters, vol. 92, no. 5, Article ID 053110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. J. Morfa, K. L. Rowlen, T. H. Reilly II, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Applied Physics Letters, vol. 92, no. 1, Article ID 013504, 2008. View at Publisher · View at Google Scholar
  40. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Applied Physics Letters, vol. 93, no. 7, Article ID 073307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Applied Physics Letters, vol. 93, no. 9, Article ID 091107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Passian, S. Zahrai, A. L. Lereu, R. H. Farahi, T. L. Ferrell, and T. Thundat, “Nonradiative surface plasmon assisted microscale Marangoni forces,” Physical Review E, vol. 73, no. 6, Article ID 066311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. R. H. Farahi, A. Passian, S. Zahrai, A. L. Lereu, T. L. Ferrell, and T. Thundat, “Microscale Marangoni actuation: all-optical and all-electrical methods,” Ultramicroscopy, vol. 106, no. 8-9, pp. 815–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. V. M. Shalaev, W. Cai, U. K. Chettiar et al., “Negative index of refraction in optical metamaterials,” Optics Letters, vol. 30, no. 24, pp. 3356–3358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. V. M. Shalaev, “Optical negative-index metamaterials,” Nature Photonics, vol. 1, no. 1, pp. 41–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. G. W. Bryant, I. Romero, F. J. Garcia de Abajo, and J. Aizpurua, “Stimulating electromagnetic response in coupled metallic nanoparticles for nanoscale optical microscopy and spectroscopy: nanorod-end effects,” in Plasmonics: Metallic Nanostructures and their Optical Properties, vol. 6323 of Proceedings of SPIE, pp. 632313–632318, 2006.
  47. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Optics Express, vol. 14, no. 21, pp. 9988–9999, 2006. View at Google Scholar · View at Scopus
  48. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Physical Review B, vol. 71, no. 23, Article ID 235420, 13 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Physical Review Letters, vol. 98, no. 14, Article ID 147401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Dahmen, B. Schmidt, and G. Von Plessen, “Radiation damping in metal nanoparticle Pairs,” Nano Letters, vol. 7, no. 2, pp. 318–322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Optics Express, vol. 15, no. 7, pp. 4253–4267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Olivares, R. Rojas, and F. Claro, “Surface modes of a pair of unequal spheres,” Physical Review B, vol. 35, no. 5, pp. 2453–2455, 1987. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chemistry of Materials, vol. 17, no. 14, pp. 3668–3672, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” Journal of Physical Chemistry B, vol. 107, no. 31, pp. 7607–7617, 2003. View at Google Scholar · View at Scopus
  55. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Optics Express, vol. 12, no. 15, pp. 3422–3427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Optics Express, vol. 8, no. 12, pp. 655–663, 2001. View at Google Scholar · View at Scopus
  57. H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Applied Physics Letters, vol. 80, no. 10, p. 1826, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Physical Review Letters, vol. 95, no. 26, Article ID 267405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: practical analysis beyond rayleigh approximation,” Applied Physics Letters, vol. 83, no. 22, pp. 4625–4627, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, “Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum,” Optics Letters, vol. 28, no. 18, pp. 1686–1688, 2003. View at Google Scholar · View at Scopus
  61. D. Ten Bloemendal, P. Ghenuche, R. Quidant, I. G. Cormack, P. Loza-Alvarez, and G. Badenes, “Local field spectroscopy of metal dimers by TPL microscopy,” Plasmonics, vol. 1, no. 1, pp. 41–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. Van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Physical Review Letters, vol. 101, no. 11, Article ID 116805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” Journal of Microscopy, vol. 229, no. 2, pp. 254–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche et al., “Probing the local field of nanoantennas using single particle luminescence,” Journal of Physics, vol. 100, no. 5, Article ID 052038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Matsumoto, T. Ichimura, T. Yatsui, M. Kourogi, T. Saiki, and M. Ohtsu, “Fabrication of a near-field optical fiber probe with a nanometric metallized protrusion,” Optical Review, vol. 5, no. 6, pp. 369–373, 1998. View at Google Scholar · View at Scopus
  66. R. Eckert, J. M. Freyland, H. Gersen et al., “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Applied Physics Letters, vol. 77, no. 23, pp. 3695–3697, 2000. View at Google Scholar · View at Scopus
  67. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” Journal of Microscopy, vol. 202, no. 1, pp. 72–76, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Physical Review Letters, vol. 93, no. 20, Article ID 200801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Physical Review Letters, vol. 95, no. 1, Article ID 017402, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Letters, vol. 7, no. 1, pp. 28–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Dorfmüller, R. Vogelgesang, R. T. Weitz et al., “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Letters, vol. 9, no. 6, pp. 2372–2377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Letters, vol. 10, no. 9, pp. 3596–3603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics, vol. 3, no. 5, pp. 287–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte et al., “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Letters, vol. 11, no. 9, pp. 3922–3926, 2011. View at Publisher · View at Google Scholar
  75. N. Félidj, G. Laurent, J. Grand et al., “Far-field raman imaging of short-wavelength particle plasmons on gold nanorods,” Plasmonics, vol. 1, no. 1, pp. 35–39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Laurent, N. Félidj, J. Aubard et al., “Evidence of multipolar excitations in surface enhanced Raman scattering,” Physical Review B, vol. 71, no. 4, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Nobile, V. A. Fonoberov, S. Kudera et al., “Confined optical phonon modes in aligned nanorod arrays detected by resonant inelastic light scattering,” Nano Letters, vol. 7, no. 2, pp. 476–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Pelton, M. Liu, S. Park, N. F. Scherer, and P. Guyot-Sionnest, “Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation,” Physical Review B, vol. 73, no. 15, Article ID 155419, pp. 1–6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. J. P. Hoogenboom, A. L. Lereu, and N. F. van Hulst, “Fabrication of molecular plasmonic devices with localized, sub-diffraction-limit control over molecular positions,” Patent. In press.
  80. J. P. Hoogenboom, G. Sanchez-Mosteiro, G. C. Des Francs et al., “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Letters, vol. 9, no. 3, pp. 1189–1195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photonics, vol. 3, no. 11, pp. 654–657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. R. P. Van Duyne, “Molecular plasmonics,” Science, vol. 306, no. 5698, pp. 985–986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Letters, vol. 7, no. 9, pp. 2871–2875, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. G. P. Wiederrecht, J. E. Hall, and A. Bouhelier, “Control of molecular energy redistribution pathways via surface plasmon gating,” Physical Review Letters, vol. 98, no. 8, Article ID 083001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. O. G. Tovmachenko, C. Graf, D. J. Van Den Heuvel, A. Van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Advanced Materials, vol. 18, no. 1, pp. 91–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Letters, vol. 7, no. 2, pp. 496–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system,” Journal of the American Chemical Society, vol. 129, no. 48, pp. 14939–14945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. Van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science, vol. 329, no. 5994, pp. 930–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” Journal of Physical Chemistry B, vol. 106, no. 4, pp. 743–747, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. H. M. Chen, H. C. Peng, R. S. Liu et al., “Controlling the length and shape of gold nanorods,” Journal of Physical Chemistry B, vol. 109, no. 42, pp. 19553–19555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” Journal of Physical Chemistry B, vol. 110, no. 37, pp. 18243–18253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. P. Mulvaney, J. Pérez-Juste, M. Giersig, L. M. Liz-Marzán, and C. Pecharromán, “Drastic surface plasmon mode shifts in gold nanorods due to electron charging,” Plasmonics, vol. 1, no. 1, pp. 61–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Zanella, A. Sandoval, P. Santiago, V. A. Basiuk, and J. M. Saniger, “New preparation method of gold nanoparticles on SiO2,” Journal of Physical Chemistry B, vol. 110, no. 17, pp. 8559–8565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. B. J. Wiley, Y. Chen, J. M. McLellan et al., “Synthesis and optical properties of silver nanobars and nanorice,” Nano Letters, vol. 7, no. 4, pp. 1032–1036, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature, vol. 406, no. 6799, pp. 1027–1031, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” Journal of Physical Chemistry B, vol. 105, no. 24, pp. 5599–5611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. N. F. Van Hulst, J. A. Veerman, M. F. García-Parajó, and L. Kuipers, “Analysis of individual (macro)molecules and proteins using near-field optics,” Journal of Chemical Physics, vol. 112, no. 18, pp. 7799–7810, 2000. View at Google Scholar · View at Scopus
  98. J. Hernando, J. P. Hoogenboom, E. M. H. P. Van Dijk et al., “Single molecule photobleaching probes the exciton wave function in a multichromophoric system,” Physical Review Letters, vol. 93, no. 23, Article ID 236404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. J. P. Hoogenboom, E. M. H. P. Van Dijk, J. Hernando, N. F. Van Hulst, and M. F. García-Parajó, “Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules,” Physical Review Letters, vol. 95, no. 9, Article ID 097401, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. N. A. M. Verhaegh and A. Van Blaaderen, “Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy,” Langmuir, vol. 10, no. 5, pp. 1427–1438, 1994. View at Google Scholar · View at Scopus