Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012 (2012), Article ID 519509, 9 pages
Research Article

Surface Plasmon States in Inhomogeneous Media at Critical and Subcritical Metal Concentrations

1Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
2College of Engineering and Science, Louisiana Tech University, Ruston, LA 71270, USA

Received 30 September 2011; Accepted 14 December 2011

Academic Editor: Ali Passian

Copyright © 2012 Katyayani Seal and Dentcho A. Genov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Semicontinuous metal-dielectric films are composed of a wide range of metal clusters of various geometries—sizes as well as structures. This ensures that at any given wavelength of incident radiation, clusters exist in the film that will respond resonantly, akin to resonating nanoantennas, resulting in the broad optical response (absorption) that is a characteristic of semicontinuous films. The physics of the surface plasmon states that are supported by such systems is complex and can involve both localized and propagating plasmons. This chapter describes near-field experimental and numerical studies of the surface plasmon states in semicontinuous films at critical and subcritical metal concentrations and evaluates the local field intensity statistics to discuss the interplay between various eigenmodes.