Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012 (2012), Article ID 573843, 14 pages
http://dx.doi.org/10.1155/2012/573843
Review Article

Nonlinear Optical Signal Processing for Tbit/s Ethernet Applications

DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Building 343, 2800 Kongens Lyngby, Denmark

Received 31 May 2011; Accepted 12 July 2011

Academic Editor: Christophe Finot

Copyright © 2012 L. K. Oxenløwe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Mikkelsen, C. Rasmussen, F. Liu, P. Mamyshev, and S. Dey, “40 Gbit/s based ULH transmission,” in Proceedings of the 9th OptoElectronics and Communications Conference (OECC '04), July 2004, Paper 14C3-1.
  2. R. Driad, R. E. Makon, V. Hurm et al., “INP DHBT-based ICs for 100 Gbit/s data transmission,” in the International Conference on Indium Phosphide and Related Materials (IPRM '08), May 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Hinton, G. Raskutti, P. M. Farrell, and R. S. Tucker, “Switching energy and device size limits on digital photonic signal processing technologies,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 14, no. 3, pp. 938–945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28Tbit/s-70km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electronics Letters, vol. 36, no. 24, pp. 2027–2029, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Metcalfe, http://www.ofcnfoec.org/Home/Program/Plenary-Session.aspx.
  6. E. B. Desurvire, “Capacity demand and technology challenges for lightwave systems in the next two decades,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4697–4710, 2006. View at Publisher · View at Google Scholar
  7. H. G. Weber, S. Ferber, M. Kroh et al., “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electronics Letters, vol. 42, no. 3, pp. 67–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Schmidt-Langhorst et al., “Generation and coherent time-division demultiplexing of up to 5.1 Tb/s single-channel 8-PSK and 16-QAM signals,” in Proceedings of the Conference on Optical Fiber Communication (OFC '09), 2009, paper PDPC6.
  9. C. Zhang et al., “Demodulation of 1.28 Tbit/s polarization-multiplexed 16-QAM signals on a single carrier with digital coherent receiver,” in Proceedings of the Conference on Optical Fiber Communication (OFC '09), 2009, paper OTuG3.
  10. Y. Ma et al., “1 Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access,” in Proceedings of the Conference on Optical Fiber Communication (OFC '09), 2009, PD paper PDPC1.
  11. R. Dischler et al., “Transmission of 1.2 Tbit/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in Proceedings of the Conference on Optical Fiber Communication (OFC '09), 2009, paper PDPC2.
  12. R. Slavík, F. Parmigiani, J. Kakande et al., “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nature Photonics, vol. 4, no. 10, pp. 690–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electronics Letters, vol. 45, no. 5, pp. 280–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. C. Hansen Mulvad, M. Galili, L. K. Oxenløwe et al., “Error-free 5.1 Tbit/s data on a single-wavelength channel using a 1.28 Tbaud symbol rate,” in Proceedings of the 22nd Annual Meeting of the IEEE Photonics Society, Belek-Antalya, Turkey, October 2009.
  15. L. K. Oxenløwe, F. Gómez-Agis, C. Ware et al., “640-Gbit/s data transmission and clock recovery using an ultrafast periodically poled lithium niobate device,” Journal of Lightwave Technology, vol. 27, no. 3, pp. 205–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. K. Oxenløwe, F. Gomez Agis, C. Ware et al., “640Gbit/s clock recovery using periodically poled lithium niobate,” Electronics Letters, vol. 44, no. 5, pp. 370–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 14, no. 3, pp. 573–579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Galili, H. C. H. Mulvad, L. Grüner-Nielsen et al., “640 Gbit/s optical wavelength conversion using FWM in a polarisation maintaining HNLF,” in the 34th European Conference on Optical Communication (ECOC '08), September 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. C. Hansen Mulvad et al., “640 Gbit/s optical time-division add-drop multiplexing in a non-linear optical loop mirror,” in IEEE Lasers and Electro-Optics Society Winter Topical Meeting, Innsbruck, Austria, January 2009, Paper MC4.4.
  20. H. C. H. Mulvad, M. Galili, L. Grüner-Nielsen, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “640 Gbit/s time-division add-drop multiplexing using a non-linear polarisation-rotating fibre loop,” in the 34th European Conference on Optical Communication (ECOC '08), September 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ashihara, T. Shimura, K. Kuroda et al., “Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate,” Applied Physics Letters, vol. 84, no. 7, pp. 1055–1057, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Galili, J. Xu, H. C. H. Mulvad et al., “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Optics Express, vol. 17, no. 4, pp. 2182–2187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Pelusi, F. Luan, T. D. Vo et al., “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nature Photonics, vol. 3, no. 3, pp. 139–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. T. D. Vo, H. Hu, M. Galili et al., “Photonic chip based 1.28 Tbaud transmitter optimization and receiver OTDM demultiplexing,” in Proceedings of the Conference on Optical Fiber Communication (OFC '10), 2010, paper PDPC5.
  25. H. Hu, M. Galili, L. K. Oxenløwe et al., “Error-free transmission of serial 1.28 Tbaud RZ-DPSK signal,” in the European Conference on Optical Communication (ECOC '10), Turin, Italy, September 2010, Paper P4.18.
  26. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1059–1061, 2004. View at Publisher · View at Google Scholar
  27. Y. Paquot et al., “Automatic higher-order dispersion measurement and compensation of a 1.28 Tbaud signal,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO '11), 2011, paper CFP3.
  28. M. Akbulut, A. M. Weiner, and P. J. Miller, “Wideband all-order polarization mode dispersion compensation via pulse shaping,” Optics Letters, vol. 30, no. 20, pp. 2691–2693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. H. C. Hansen Mulvad, L. K. Oxenløwe, A. T. Clausen, M. Galili, L. Grüner-Nielsen, and P. Jeppesen, “Error-free 320 Gb/s simultaneous add-drop multiplexing,” in Proceedings of the Conference on Optical Fiber Communication (OFC '07), Anaheim, Calif, USA, March 2007, Paper OTuI.
  30. H. Sotobayashi, W. Chujo, and T. Ozeki, “Inter-wavelength-band conversions and demultiplexings of 640 Gbit/s OTDM signals,” in Proceedings of the Conference on Optical Fiber Communication (OFC '02), pp. 261–262, 2002.
  31. H. Hu, E. Palushani, M. Galili et al., “1.28 Tb/s wavelength conversion for polarisation multiplexed RZ-DPSK signals,” in Proceedings of the Conference on Optical Fiber Communication (OFC '10), San Diego, Calif, USA, March 2010, Paper OWP1.
  32. E. Tangdiongga et al., “SOA-based clock recovery and demultiplexing in a lab trial of 640- Gb/s OTDM transmission over 50-km Fibre Link,” in the 33rd European Conference and Exhibition of Optical Communication (ECOC '07), 2007, PD 1.2.
  33. L. K. Oxenløwe, F. Gomez Agis, C. Ware et al., “640 Gbit/s data transmission and clock recovery using an ultra-fast periodically poled lithium niobate device,” in Proceedings of the Conference on Optical Fiber Communication (OFC '08), San Diego, Calif, USA, February 2008, PDP22.
  34. L. F. Mollenauer and C. Xu, “Time-lens timing-jitter compensator in ultra-long haul DWDM dispersion managed soliton transmissions,” in the Conference on Lasers and Electro-Optics (CLEO '02), pp. CPDB11–CPDB13, May 2002. View at Scopus
  35. Brian H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1951–1963, 1994. View at Publisher · View at Google Scholar
  36. H. Hu, E. Palushani, J. L. Areal et al., “Optical frame synchronizer for 10 G Ethernet packets aiming at 1 Tb/s OTDM Ethernet,” in Proceedings of the Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference (OFC/NFOEC '10), 2010.
  37. J. L. Areal, H. Hu, and E. Palushani, “Synchronization and NRZ-to-RZ conversion of 10 Gbit/s Ethernet-like data packets and subsequent optical TDM multiplexing to 330 Gbit/s,” in Proceedings of the Conference on Optical Fiber Communication (OFC '11), 2011.
  38. M. Galili, H. C. Hansen Mulvad, H. Hu et al., “650 Gbit/s OTDM transmission over 80 km SSMF incorporating clock recovery, channel identification and demultiplexing in a Polarisation insensitive receiver,” in Proceedings of the Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference (OFC/NFOEC '10), 2010, OWO3.
  39. H. Ji, H. Hu, M. Galili et al., “Optical waveform sampling and error-free demultiplexing of 1.28 Tbit/s serial data in a silicon nanowire,” in the Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference (OFC/NFOEC '10), 2010, PDPC7.
  40. E. Palushani, L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Flat-top pulse generation by the optical fourier transform technique for ultrahigh speed signal processing,” IEEE Journal of Quantum Electronics, vol. 45, no. 11, pp. 1317–1324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Foster et al., “Generation of 270 Gb/s NRZ data packets from a 10-Gb/s signal using a temporal telescopic system,” in Proceedings of the Conference on Optical Fiber Communication (OFC '09), 2009, OWS4.
  42. L. K. Oxenløwe, R. Slavík, M. Galili et al., “640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 14, no. 3, pp. 566–572, 2008. View at Publisher · View at Google Scholar
  43. E. Palushani, H. Hu, L. K. Oxenløwe et al., “640 Gb/s timing tolerant demultiplexing using a cascaded long-period fiber grating pulse shaper,” in the 35th European Conference on Optical Communication (ECOC '09), 2009.
  44. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “Polarization-independent high-speed switching in a standard non-linear optical loop mirror,” in Proceedings of the Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC '08), 2008. View at Publisher · View at Google Scholar
  45. E. Tangdiongga et al., “SOA-based clock recovery and demultiplexing in a lab trial of 640- Gb/s OTDM transmission over 50-km fibre link,” in the 33rd European Conference and Exhibition of Optical Communication (ECOC '07), 2007, PD 1.2.
  46. T. Hirooka, M. Okazaki, T. Hirano, P. Guan, M. Nakazawa, and S. Nakamura, “All-optical demultiplexing of 640 Gbit/s OTDM-DPSK signal using a semiconductor SMZ switch,” in the 35th European Conference on Optical Communication (ECOC 09), 2009, paper 4.3.2.