Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012, Article ID 591083, 8 pages
http://dx.doi.org/10.1155/2012/591083
Research Article

Gold Nanoparticles as Probes for Nano-Raman Spectroscopy: Preliminary Experimental Results and Modeling

1Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cédex 3, France
2Laboratoire de Physique des Gaz et des Plasmas, UMR 8578 CNRS-Université Paris-Sud, Bat. 210, Campus d’Orsay, 91405 Orsay, France

Received 28 July 2011; Revised 14 December 2011; Accepted 29 December 2011

Academic Editor: Ali Passian

Copyright © 2012 V. Le Nader et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” Journal of the American Chemical Society, vol. 99, no. 15, pp. 5215–5217, 1977. View at Google Scholar · View at Scopus
  2. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, vol. 26, no. 2, pp. 163–166, 1974. View at Google Scholar · View at Scopus
  3. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry—part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of Electroanalytical Chemistry, vol. 84, no. 1, pp. 1–20, 1977. View at Google Scholar · View at Scopus
  4. K. Kneipp, Y. Wang, H. Kneipp et al., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters, vol. 78, no. 9, pp. 1667–1670, 1997. View at Google Scholar · View at Scopus
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. Z.-Y. Li and Y. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Letters, vol. 10, no. 1, pp. 243–249, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. S. Rao, S. Raj, S. Balint et al., “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Applied Physics Letters, vol. 96, no. 21, Article ID 213701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength,” Journal of the Chemical Society, Faraday Transactions 2, vol. 75, pp. 790–798, 1979. View at Publisher · View at Google Scholar · View at Scopus
  9. C. J. Orendorff, L. Gearheart, N. R. Jana, and C. J. Murphy, “Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates,” Physical Chemistry Chemical Physics, vol. 8, no. 1, pp. 165–170, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. K. Faulds, R. E. Littleford, D. Graham, G. Dent, and W. E. Smith, “Comparison of surface-enhanced resonance Raman scattering from unaggregated and aggregated nanoparticles,” Analytical Chemistry, vol. 76, no. 3, pp. 592–598, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. T. Makiabadi, A. Bouvrée, V. Le Nader, H. Terrisse, and G. Louarn, “Preparation, optimization, and characterization of SERS sensor substrates based on two-dimensional structures of gold colloid,” Plasmonics, vol. 5, no. 1, pp. 21–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced raman scattering,” Applied Spectroscopy, vol. 60, no. 9, pp. 989–993, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, UK, 2006.
  14. J. Wessel, “Surface-enhanced optical microscopy,” The Journal of the Optical Society of America, vol. 2, pp. 1538–1541, 1985. View at Google Scholar · View at Scopus
  15. S. L. Sharp, R. J. Warmack, J. P. Goudonnet, I. Lee, and T. L. Ferrell, “Spectroscopy and imaging using the photon scanning-tunneling microscope,” Accounts of Chemical Research, vol. 26, no. 7, pp. 377–382, 1993. View at Google Scholar · View at Scopus
  16. A. Hartschuh, M. R. Beversluis, A. Bouhelier, and L. Novotny, “Tip-enhanced optical spectroscopy,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1817, pp. 807–819, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. B. Pettinger, “Tip-Enhanced Raman Spectroscopy (TERS),” Topics in Applied Physics, vol. 103, pp. 217–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chemical Society Reviews, vol. 37, no. 5, pp. 921–930, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. Zhang, “Tip-enhanced Raman spectroscopy—its status, challenges and future directions,” Chemical Physics Letters, vol. 472, no. 1–3, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Aroca, Surface-Enhanced Vibrational Spectroscopy, John Wiley and Sons, Chichester, UK, 2007.
  21. C. Vannier, B. S. Yeo, J. Melanson, and R. Zenobi, “Multifunctional microscope for far-field and tip-enhanced Raman spectroscopy,” Review of Scientific Instruments, vol. 77, no. 2, article 023104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” Journal of Physical Chemistry C, vol. 111, no. 4, pp. 1733–1738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angewandte Chemie, vol. 47, no. 9, pp. 1658–1661, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, “Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1434–1440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. B. S. Yeo, E. Amstad, T. Schmid, J. Stadler, and R. Zenobi, “Nanoscale probing of a polymer-blend thin film with Tip-enhanced Raman spectroscopy,” Small, vol. 5, no. 8, pp. 952–960, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. L. G. Cançado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1420–1426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Mehtani, N. Lee, R. D. Hartschuh et al., “Nano-Raman spectroscopy with side-illumination optics,” Journal of Raman Spectroscopy, vol. 36, no. 11, pp. 1068–1075, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Saito, M. Motohashi, N. Hayazawa, M. Iyoki, and S. Kawata, “Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode,” Applied Physics Letters, vol. 88, no. 14, Article ID 143109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Lee, R. D. Hartschuh, D. Mehtani et al., “High contrast scanning nano-Raman spectroscopy of silicon,” Journal of Raman Spectroscopy, vol. 38, no. 6, Article ID 143109, pp. 789–796, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Picardi, Q. Nguyen, J. Schreiber, and R. Ossikovski, “Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy,” The European Physical Journal, vol. 40, no. 2, pp. 197–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. G. Gucciardi, M. Lopes, R. Déturche, C. Julien, D. Barchiesi, and M. Lamy De La Chapelle, “Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy,” Nanotechnology, vol. 19, no. 21, Article ID 215702, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. Motohashi, N. Hayazawa, A. Tarun, and S. Kawata, “Depolarization effect in reflection-mode tip-enhanced Raman scattering for Raman active crystals,” Journal of Applied Physics, vol. 103, no. 3, Article ID 034309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Merlen, J. C. Valmalette, P. G. Gucciardi, M. Lamy de la Chapelle, A. Frigout, and R. Ossikovski, “Depolarization effects in tip-enhanced raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1361–1370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Ren, G. Picardi, and B. Pettinger, “Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching,” Review of Scientific Instruments, vol. 75, no. 4, pp. 837–841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. C. C. Neacsu, S. Berweger, and M. B. Raschke, “Tip-enhanced raman imaging and nanospectroscopy: Sensitivity, symmetry, and selection rules,” Nanobiotechnology, vol. 3, no. 3-4, pp. 172–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Williams and D. Roy, “Fabrication of gold tips suitable for tip-enhanced Raman spectroscopy,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 26, no. 5, pp. 1761–1764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chemical Physics Letters, vol. 318, no. 1-3, pp. 131–136, 2000. View at Google Scholar · View at Scopus
  38. M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Review of Scientific Instruments, vol. 77, no. 10, Article ID 103702, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chemical Physics Letters, vol. 318, no. 1–3, pp. 131–136, 2000. View at Google Scholar · View at Scopus
  40. S. S. Kharintsev, G. G. Hoffmann, P. S. Dorozhkin, G. De With, and J. Loos, “Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging,” Nanotechnology, vol. 18, no. 31, Article ID 315502, 2007. View at Publisher · View at Google Scholar
  41. N. Anderson, A. Hartschuh, and L. Novotny, “Near-field Raman microscopy,” Materials Today, vol. 8, no. 5, pp. 50–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. L. Demming, F. Festy, and D. Richards, “Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering,” Journal of Chemical Physics, vol. 122, no. 18, Article ID 184716, pp. 1–7, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Applied Physics Letters, vol. 85, no. 25, pp. 6239–6241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. K. F. Domke and B. Pettinger, “Tip-enhanced Raman spectroscopy of 6H-SiC with graphene adlayers: selective suppression of E1 modes,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1427–1433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. W. X. Sun and Z. X. Shen, “Apertureless near-field scanning Raman microscopy using reflection scattering geometry,” Ultramicroscopy, vol. 94, no. 3-4, pp. 237–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Roy, J. Wang, and M. E. Welland, “Nanoscale imaging of carbon nanotubes using tip enhanced Raman spectroscopy in reflection mode,” Faraday Discussions, vol. 132, pp. 215–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. R. J. C. Brown, J. Wang, R. Tantra, R. E. Yardley, and M. J. T. Milton, “Electromagnetic modelling of Raman enhancement from nanoscale substrates: A route to estimation of the magnitude of the chemical enhancement mechanism in SERS,” Faraday Discussions, vol. 132, pp. 201–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Characterizing carbon nanotube samples with resonance Raman scattering,” New Journal of Physics, vol. 5, pp. 139.1–139.17, 2003. View at Google Scholar · View at Scopus
  49. N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 127, no. 8, pp. 2533–2537, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, and L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Letters, vol. 5, no. 11, pp. 2310–2313, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. N. Anderson, A. Hartschuh, and L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Letters, vol. 7, no. 3, pp. 577–582, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. T. A. Yano, T. Ichimura, A. Taguchi et al., “Confinement of enhanced field investigated by tip-sample gap regulation in tapping-mode tip-enhanced Raman microscopy,” Applied Physics Letters, vol. 91, no. 12, Article ID 121101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Analytical and Bioanalytical Chemistry, vol. 391, no. 5, pp. 1907–1916, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. A. Tarun, N. Hayazawa, M. Motohashi, and S. Kawata, “Highly efficient tip-enhanced Raman spectroscopy and microscopy of strained silicon,” Review of Scientific Instruments, vol. 79, no. 1, Article ID 013706, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus