Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012, Article ID 863875, 9 pages
http://dx.doi.org/10.1155/2012/863875
Research Article

Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India

Received 8 June 2011; Accepted 20 July 2011

Academic Editor: Shunichi Sato

Copyright © 2012 Jolly Xavier et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, Academic Press, Waltham, Mass, USA, 2008.
  2. Y. S. Kivshar and E. A. Ostrovskaya, “Optical vortices: folding and twisting waves of light,” Optics and Photonics News, vol. 12, no. 4, pp. 24–29, 2001. View at Google Scholar · View at Scopus
  3. I. Freund and N. Shvartsman, “Wave-field phase singularities: the sign principle,” Physical Review A, vol. 50, no. 6, pp. 5164–5172, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. M. R. Dennis, K. O'Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Progress in Optics, vol. 53, pp. 293–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. O'Holleran, M. J. Padgett, and M. R. Dennis, “Topology of optical vortex lines formed by the interference of three, four, and five plane waves,” Optics Express, vol. 14, no. 7, pp. 3039–3044, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. G. Wang, L. Q. Wang, and S. Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Optics Communications, vol. 282, no. 6, pp. 1088–1094, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Dreischuh, S. Chervenkov, D. Neshev, G. G. Paulus, and H. Walther, “Generation of lattice structures of optical vortices,” Journal of the Optical Society of America B, vol. 19, no. 3, pp. 550–556, 2002. View at Google Scholar · View at Scopus
  8. S. Vyas and P. Senthilkumaran, “Interferometric optical vortex array generator,” Applied Optics, vol. 46, no. 15, pp. 2893–2898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Ruben and D. M. Paganin, “Phase vortices from a Young's three-pinhole interferometer,” Physical Review E, vol. 75, no. 6, article 066613, 2007. View at Publisher · View at Google Scholar
  10. S. Vyas and P. Senthilkumaran, “Vortex array generation by interference of spherical waves,” Applied Optics, vol. 46, no. 32, pp. 7862–7867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Masajada and B. Dubik, “Optical vortex generation by three plane wave interference,” Optics Communications, vol. 198, no. 1–3, pp. 21–27, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. G. C. G. Berkhout and M. W. Beijersbergen, “Method for probing the oirbital angular momentum of optical vortices in electromagnetic waves from astronomical objects,” Physical Review Letters, vol. 101, no. 10, Article ID 100801, 2008. View at Publisher · View at Google Scholar
  13. J. Xavier and J. Joseph, “Tunable complex photonic chiral lattices by reconfigurable optical phase engineering,” Optics Letters, vol. 36, no. 3, pp. 403–405, 2011. View at Publisher · View at Google Scholar
  14. V. Arrizón, D. Sánchez-De-La-Llave, G. Méndez, and U. Ruiz, “Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms,” Optics Express, vol. 19, no. 11, pp. 10553–10562, 2011. View at Publisher · View at Google Scholar
  15. Y. F. Chen, H. C. Liang, Y. C. Lin et al., “Generation of optical crystals and quasicrystal beams: kaleidoscopic patterns and phase singularity,” Physics Review A, vol. 83, Article ID 053813, 4 pages, 2011. View at Google Scholar
  16. K. J. H. Law, A. Saxena, P. G. Kevrekidis, and A. R. Bishop, “Stable structures with high topological charge in nonlinear photonic quasicrystals,” Physical Review A, vol. 82, no. 3, Article ID 035802, 2010. View at Publisher · View at Google Scholar
  17. W. Wang, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental investigation of local properties and statistics of optical vortices in random wave fields,” Physical Review Letters, vol. 94, no. 10, Article ID 103902, 2005. View at Publisher · View at Google Scholar
  18. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Optics Letters, vol. 33, no. 2, pp. 198–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin, and D. S. Hall, “Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate,” Science, vol. 329, no. 5996, pp. 1182–1185, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature, vol. 386, no. 6621, pp. 143–149, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Busch, S. Loelkes, R. B. Wehrspohn, and H. Foell, Photonic Crystals: Advances in Design, Fabrication, and Characterization, Wiley-VCH, Weinheim, Germany, 2004.
  22. T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, and S. Matsuo, “Holographic lithography of periodic two-and three-dimensional microstructures in photoresist SU-8,” Optics Express, vol. 14, no. 17, pp. 7943–7953, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, “Three-dimensional optically induced reconfigurable photorefractive nonlinear photonic lattices,” Optics Letters, vol. 34, no. 17, pp. 2625–2627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser and Photonics Reviews, vol. 4, no. 4, pp. 568–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Advanced Materials, vol. 22, no. 3, pp. 356–360, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Optics Letters, vol. 27, no. 11, pp. 900–902, 2002. View at Google Scholar · View at Scopus
  27. A. Dwivedi, J. Xavier, J. Joseph, and K. Singh, “Formation of all fourteen Bravais lattices of three dimensional photonic crystal structures by a dual beam multiple-exposure holographic technique,” Applied Optics, vol. 47, no. 12, pp. 1973–1980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science, vol. 292, no. 5518, pp. 912–914, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. M. Wegener and S. Linden, “Shaping optical space with metamaterials,” Physics Today, vol. 63, no. 10, pp. 32–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature, vol. 464, no. 7291, pp. 1018–1020, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. P. Senthilkumaran, F. Wyrowski, and H. Schimmel, “Vortex Stagnation problem in iterative Fourier transform algorithms,” Optics and Lasers in Engineering, vol. 43, no. 1, pp. 43–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Indbetouw, “Optical vortices and their propagation,” Journal of Modern Optics, vol. 40, no. 1, pp. 73–87, 1993. View at Google Scholar · View at Scopus