Table of Contents Author Guidelines Submit a Manuscript
International Journal of Optics
Volume 2012, Article ID 979632, 6 pages
http://dx.doi.org/10.1155/2012/979632
Research Article

Amplification of Frequency-Modulated Similariton Pulses in Length-Inhomogeneous Active Fibers

1Ul'yanovsk State University, 42 L.Tolstogo Street, Ul'anovsk 432700, Russia
2Fiber Optics Research Center, 38 Vavilov Street, Moscow 119333, Russia
3Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 107996, Russia

Received 4 May 2011; Accepted 21 June 2011

Academic Editor: Christophe Finot

Copyright © 2012 I. O. Zolotovskii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Physical Review Letters, vol. 84, no. 26, pp. 6010–6013, 2000. View at Google Scholar
  2. G. Chang, H. G. Winful, A. Galvanauskas, and T. B. Norris, “Self-similar parabolic beam generation and propagation,” Physical Review E, vol. 72, no. 1, Article ID 016609, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nature Physics, vol. 3, no. 9, pp. 597–603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Optics Letters, vol. 29, no. 5, pp. 498–500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Optics Letters, vol. 32, no. 4, pp. 331–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Y. Plotskii, A. A. Sysoliatin, A. I. Latkin et al., “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 85, no. 7, pp. 397–401, 2007. View at Google Scholar
  7. A. V. Andrianov, S. V. Muraviov, A. V. Kim, and A. A. Sysoliatin, “Generation of optical soliton pulses smoothly tunable in a wide frequency range in silica fibers with variable dispersion,” JETP Letters, vol. 85, no. 8, pp. 364–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. I. O. Zolotovskii, D. I. Sementsov, A. K. Senatorov, A. A. Sysolyatin, and M. S. Yavtushenko, “Dynamics of similariton pulses in length-inhomogeneous active fibres,” Quantum Electronics, vol. 40, no. 3, pp. 229–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. Zeytunyan, K. A. Palandjan, G. L. Esayan, and L. K. Muradyan, “Nonlinear dispersive similariton: spectral interferometric study,” Quantum Electronics, vol. 40, no. 4, pp. 327–328, 2010. View at Google Scholar
  10. J. Laegsgaard and P. J. Roberts, “Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers,” Journal of the Optical Society of America B, vol. 26, no. 9, pp. 1795–1800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Wabnitz and C. Finot, “Theory of parabolic pulse propagation in nonlinear dispersion-decreasing optical fiber amplifiers,” Journal of the Optical Society of America B, vol. 25, no. 4, pp. 614–621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Dai, Y. Wang, and J. Zhang, “Analytical spatiotemporal localizations for the generalized (3+1)-dimensional nonlinear Schrödinger equation,” Optics Letters, vol. 35, no. 9, pp. 1437–1439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Optics Express, vol. 15, no. 24, pp. 15824–15835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Ghosh, M. Basu, and S. Sarkar, “Generation of self-similar parabolic pulses by designing normal dispersion decreasing fiber amplifier as well as its staircase substitutes,” Journal of Lightwave Technology, vol. 27, no. 17, pp. 3880–3887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Optics Letters, vol. 25, no. 5-24, pp. 1753–1755, 2000. View at Google Scholar · View at Scopus
  16. C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE Journal of Quantum Electronics, vol. 45, no. 11, Article ID 5308680, pp. 1482–1489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. V. A. Bogatyrjov, M. M. Bubnov, E. M. Dianov, and A. A. Sysoliatin, “Advanced fibres for soliton systems,” Pure and Applied Optics, vol. 4, no. 4, article 009, pp. 345–347, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. U. G. Akhmetshin, V. A. Bogatyrev, A. K. Senatorov, A. A. Sysolyatin, and M. G. Shalygin, “New single-mode fibres with the flat spectral dependence of the chromatic dispersion varying over the fibre length,” Quantum Electronics, vol. 33, no. 3, pp. 265–267, 2003. View at Google Scholar · View at Scopus
  19. M. E. Likhachev, M. M. Bubnov, K. V. Zotov et al., “Erbium-doped aluminophosphosilicate optical fibres,” Quantum Electronics, vol. 40, no. 7, pp. 633–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Grukh, V. A. Bogatyrev, A. A. Sysolyatin, V. M. Paramonov, A. S. Kurkov, and E. M. Dianov, “Broadband radiation source based on an ytterbium-doped fibre with fibre-length-distributed pumping,” Quantum Electronics, vol. 34, no. 3, pp. 247–248, 2004. View at Google Scholar · View at Scopus
  21. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Reviews of Modern Physics, vol. 78, no. 2, pp. 309–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. V. V. Lozhkarev, S. G. Garanin, R. R. Gerke et al., “100-TW femtosecond laser based on parametric amplification,” Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 82, no. 4, pp. 196–199, 2005. View at Google Scholar
  23. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, AIP, New York, NY, USA, 1992.
  24. D. N. Papadopoulos, Y. Zaouter, M. Hanna et al., “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Optics Letters, vol. 32, no. 17, pp. 2520–2522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” Journal of the Optical Society of America B, vol. 27, no. 11, pp. B63–B92, 2010. View at Publisher · View at Google Scholar · View at Scopus