International Journal of Photoenergy

International Journal of Photoenergy / 2006 / Article
Special Issue

Light-harvesting J-aggregates

View this Special Issue

Open Access

Volume 2006 |Article ID 047917 | https://doi.org/10.1155/IJP/2006/47917

Stefan Kirstein, Hans von Berlepsch, Christoph Böttcher, "Photo-induced reduction of Noble metal ions to metal nanoparticles on tubular J-aggregates", International Journal of Photoenergy, vol. 2006, Article ID 047917, 7 pages, 2006. https://doi.org/10.1155/IJP/2006/47917

Photo-induced reduction of Noble metal ions to metal nanoparticles on tubular J-aggregates

Received06 Jun 2006
Revised23 Nov 2006
Accepted01 Dec 2006
Published18 Jan 2007

Abstract

Palladium and silver nanoparticles are formed on the surface of tubular J-aggregates of an amphiphilic tetrachlorobenzimidacarbocyanine dye by reduction of the respective metal cations in aqueous solution. Upon addition of the palladium complex Na2PdCl4 to the aggregate solution, the absorption spectrum shows significant changes which is explained by partial destruction of the aggregates. Cryogenic transmission electron microscopy (cryo-TEM) images show that the tubular J-aggregates are randomly covered by well-separated Pd nanoparticles of approximately 1–3 nm size. Larger particles and higher particle density along the aggregates are obtained when an auxiliary reducing agent is added to the solution. The presence of the metallic particles leads to efficient fluorescence quenching giving clear evidence for super quenching. In similar experiments using AgNO3, silver nanoparticles are grown which are larger in size but less dense distributed along the aggregates. At least in the case of the silver particles, the spontaneous formation of metal nanoparticles is assumed to be initiated by a photo-induced electron transfer process (PET).

References

  1. G. Scheibe, “Über die veränderlichkeit des absorptionsspektrums einiger sensibilisierungsfarbstoffe und deren ursache,” Angewandte Chemie, vol. 49, p. 563, 1936. View at: Google Scholar
  2. E. E. Jelly, “Spectral absorption and fluorescence of dyes inthe molecular state,” Nature, vol. 138, pp. 1009–1010, 1936. View at: Google Scholar
  3. S. Dähne, “Der Mechanismus der photographischen Desensibilisierung,” Zeitschift für Wissenschaftliche Photographie, photophysik und photochemie, vol. 59, pp. 113–173, 1965. View at: Google Scholar
  4. A. S. Davydov, Theory of Molecular Excitons, Plenum Press, New York, NY, USA, 1971. View at: Google Scholar
  5. V. Czikklely, H. D. Forsterling, and H. Kuhn, “Extended dipole model for aggregates of dye molecules,” Chemical Physics Letters, vol. 6, no. 3, pp. 207–210, 1970. View at: Publisher Site | Google Scholar
  6. J. Knoester, “Nonlinear optical line shapes of disordered molecular aggregates: motional narrowing and the effect of intersite correlations,” The Journal of Chemical Physics, vol. 99, no. 11, pp. 8466–8479, 1993. View at: Publisher Site | Google Scholar
  7. S. de Boer, K. J. Vink, and D. A. Wiersma, “Optical dynamics of condensed molecular aggregates: an accumulated photon-echo and hole-burning study of the J-aggregate,” Chemical Physics Letters, vol. 137, no. 2, pp. 99–106, 1987. View at: Publisher Site | Google Scholar
  8. F. C. Spano and S. Mukamel, “Superradiance in molecular aggregates,” The Journal of Chemical Physics, vol. 91, no. 2, pp. 683–700, 1989. View at: Publisher Site | Google Scholar
  9. F. Meinardi, M. Cerminara, A. Sassella, R. Bonifacio, and R. Tubino, “Superradiance in molecular H aggregates,” Physical Review Letters, vol. 91, no. 24, Article ID 247401, 4 pages, 2003. View at: Publisher Site | Google Scholar
  10. T. Kobayashi, Ed., J-Aggregates, World Scientific, Singapore, 1996. View at: Google Scholar
  11. J. Moll, W. J. Harrison, D. V. Brumbaugh, and A. A. Muenter, “Exciton annihilation in J-aggregates probed by femtosecond fluorescence upconversion,” Journal of Physical Chemistry A, vol. 104, no. 39, pp. 8847–8854, 2000. View at: Publisher Site | Google Scholar
  12. V. Sundström, T. Gillbro, R. A. Gadonas, and A. Piskarskas, “Annihilation of singlet excitons in J-aggregates of pseudoisocyanine (PIC) studied by pico- and subpicosecond spectroscopy,” The Journal of Chemical Physics, vol. 89, no. 5, pp. 2754–2762, 1988. View at: Publisher Site | Google Scholar
  13. J. Moll, S. Dähne, J. R. Durrant, and D. A. Wiersma, “Optical dynamics of excitons in J-aggregates of a carbocyanine dye,” The Journal of Chemical Physics, vol. 102, no. 16, pp. 6362–6370, 1995. View at: Publisher Site | Google Scholar
  14. I. G. Scheblykin, O. Y. Sliusarenko, L. S. Lepnev, A. G. Vitukhnovsky, and M. Van der Auweraer, “Strong nonmonotonous temperature dependence of exciton migration rate in J-aggregates at temperatures from 5 to 300 K,” Journal of Physical Chemistry B, vol. 104, no. 47, pp. 10949–10951, 2000. View at: Publisher Site | Google Scholar
  15. K. Ohta, M. Yang, and G. R. Fleming, “Ultrafast exciton dynamics of J-aggregates in room temperature solution studied by third-order nonlinear optical spectroscopy and numerical simulation based on exciton theory,” The Journal of Chemical Physics, vol. 115, no. 16, pp. 7609–7621, 2001. View at: Publisher Site | Google Scholar
  16. G. Scheibe, A. Schöntag, and F. Katheder, “Fluoreszenz und Energiefortleitung bei reversibel polymerisierten Farbstoffen,” Naturwissenschaften, vol. 27, no. 29, pp. 499–501, 1939. View at: Publisher Site | Google Scholar
  17. R. M. Jones, L. Lu, R. Helgeson, T. S. Bergstedt, D. W. McBranch, and D. G. Whitten, “Building highly sensitive dye assemblies for biosensing from molecular building blocks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 14769–14772, 2001. View at: Publisher Site | Google Scholar
  18. L. Lu, R. Helgeson, R. M. Jones, D. McBranch, and D. Whitten, “Superquenching in cyanine pendant poly(L-lysine) dyes: dependence on molecular weight, solvent, and aggregation,” Journal of the American Chemical Society, vol. 124, no. 3, pp. 483–488, 2002. View at: Publisher Site | Google Scholar
  19. C. Tan, E. Atas, J. G. Müller, M. R. Pinto, V. D. Kleiman, and K. S. Schanze, “Amplified quenching of a conjugated polyelectrolyte by cyanine dyes,” Journal of the American Chemical Society, vol. 126, no. 42, pp. 13685–13694, 2004. View at: Publisher Site | Google Scholar
  20. A. Pawlik, S. Kirstein, U. De Rossi, and S. Dähne, “Structural conditions for spontaneous generation of optical activity in J-aggregates,” Journal of Physical Chemistry B, vol. 101, no. 29, pp. 5646–5651, 1997. View at: Publisher Site | Google Scholar
  21. S. Kirstein, H. von Berlepsch, and C. Böttcher et al., “Chiral J-aggregates formed by achiral cyanine dyes,” ChemPhysChem, vol. 1, no. 3, pp. 146–150, 2000. View at: Publisher Site | Google Scholar
  22. H. von Berlepsch, C. Böttcher, and A. Ouart et al., “Surfactant-induced changes of morphology of J-aggregates: superhelix-to-tubule transformation,” Langmuir, vol. 16, no. 14, pp. 5908–5916, 2000. View at: Publisher Site | Google Scholar
  23. H. von Berlepsch, M. Regenbrecht, S. Dähne, S. Kirstein, and C. Böttcher, “Surfactant-induced separation of stacked J-aggregates. Cryo-transmission electron microscopy studies reveal bilayer ribbons,” Langmuir, vol. 18, no. 7, pp. 2901–2907, 2002. View at: Publisher Site | Google Scholar
  24. A. Pawlik, A. Ouart, S. Kirstein, H.-W. Abraham, and S. Dähne, “Synthesis and UV/Vis spectra of J-aggregating 5,5,6,6-tetrachlorobenzimidacarbocyanine dyes for artificial light-harvesting systems and for asymmetrical generation of supramolecular helices,” European Journal of Organic Chemistry, no. 16, pp. 3065–3080, 2003. View at: Publisher Site | Google Scholar
  25. C. Didraga, A. Pugžlys, P. R. Hania, H. von Berlepsch, K. Duppen, and J. Knoester, “Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates,” Journal of Physical Chemistry B, vol. 108, no. 39, pp. 14976–14985, 2004. View at: Publisher Site | Google Scholar
  26. G. O. Mallory and J. B. Hajdu, Electroless Plating, American Electroplaters and Surface Finishers Society, Orlando, Fla, USA, 1989. View at: Google Scholar
  27. G. M. Chow, M. Pazurandeh, S. Baral, and J. R. Campbell, “TEM and HRTEM characterization of metallized nanotubules derived from bacteria,” Nanostructured Materials, vol. 2, no. 5, pp. 495–503, 1993. View at: Publisher Site | Google Scholar
  28. H. von Berlepsch, S. Kirstein, R. Hania, A. Pugžlys, and C. Böttcher, “Modification of the nanoscale structure of the J-aggregate of a sulfonate substituted amphiphilic carbocyanine dye through incorporation of surface-active additives,” Journal of Physical Chemistry B, in press.. View at: Google Scholar
  29. H. von Berlepsch, S. Kirstein, and C. Böttcher, “Effect of alcohols on J-aggregation of a carbocyanine dye,” Langmuir, vol. 18, no. 20, pp. 7699–7705, 2002. View at: Publisher Site | Google Scholar
  30. T. Tani and Y. Sano, “Electro-spin resonance study of positive holes in J-aggregates of a cyanine dye on AgBr microcrystals: effect of aggregate size,” Journal of Applied Physics, vol. 69, no. 8, pp. 4391–4397, 1991. View at: Publisher Site | Google Scholar
  31. B. Trösken, F. Willig, K. Schwarzburg, A. Ehert, and M. Spitler, “Electron transfer quenching of excited J-aggregate dyes on AgBr microcrystals between 300 and 5 K,” Journal of Physical Chemistry, vol. 99, no. 14, pp. 5152–5160, 1995. View at: Publisher Site | Google Scholar
  32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic, New York, NY, USA, 1999. View at: Google Scholar
  33. C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6297–6301, 2003. View at: Publisher Site | Google Scholar
  34. K. Hosoi, A. Hirano, and T. Tani, “Dynamics of photocreated positive holes in silver bromide microcrystals with adsorbed cyanine dyes,” Journal of Applied Physics, vol. 90, no. 12, pp. 6197–6204, 2001. View at: Publisher Site | Google Scholar

Copyright © 2006 Stefan Kirstein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views275
Downloads1180
Citations

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.