International Journal of Photoenergy
 Journal metrics
Acceptance rate45%
Submission to final decision68 days
Acceptance to publication33 days
CiteScore1.610
Impact Factor2.026
 Submit

Simplified Modeling and Simulation of Electricity Production from a Dish/Stirling System

Read the full article

 Journal profile

International Journal of Photoenergy publishes focused on all areas of photoenergy, including photochemistry and solar energy utilization.

 Editor spotlight

Chief Editor, Giulia Grancini, is based at the University of Pavia, Italy. Her current research work aims at solving the stability and toxicity issues of developing multi-dimensional hybrid interfaces as lego-bricks for a new efficient, stable, and environmentally-friendly solar technology.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Intelligent Control of a Photovoltaic Generator for Charging and Discharging Battery Using Adaptive Neuro-Fuzzy Inference System

This paper presents a method of intelligent control of a photovoltaic generator (PVG) connected to a load and a battery. The system consists of charging and discharging a battery. An intelligent algorithm based on adaptive neuro-fuzzy inference system (ANFIS) is presented in this work. It performs two separate tasks simultaneously. First, it is used as a PVG Maximum Power Point Tracking (MPPT) command. This same algorithm is used secondly for protecting the battery against deep charges and discharges. A regulation of the DC bus voltage is also carried out by means of a PI corrector for a good supply of the load. The simulation results under MATLAB/Simulink show that the method proposed in this work allows the PV system to function normally by charging and discharging the battery whatever the weather conditions.

Research Article

Study on Tensile Creep Behavior of 12Cr1MoV Alloy Steel under High-Temperature Alkali Metal Salt Environment for Solar Thermal Power Generation

The heat exchange tubes of solar thermal power generation work in molten salt environment with periodic temperature change. In order to reveal the tensile creep behavior of 12Cr1MoV pipeline steel under high-temperature alkali metal salt environment, the tensile creep behavior of 12Cr1MoV alloy under different applied load and reaction temperature in high-temperature alkali metal chloride salt environment was studied. The results show that the deformation of 12Cr1MoV alloy in 600°C, NaCl-35%KCl mixed salt environment is mainly controlled by diffusion creep; with the increase of stress, the creep life of 12Cr1MoV alloy decreases. The creep fracture mechanism of 12Cr1MoV alloy in 600°C, NaCl-35%KCl mixed salt environment is intergranular ductile fracture; the increase of temperature will enhance the activation and oxidation of the chlorine atoms, thereby accelerating the corrosion of the base metal and increasing the spheroidization speed of the pearlite matrix, and the creep deformation rate of the alloy increases with increasing temperature.

Research Article

An Ignored Wind Generates More Electricity: A Solar Updraft Tower to a Wind Solar Tower

A solar updraft tower is one of the wind power generation plants which utilizes solar energy. The purpose of this study was to ascertain whether the tower was also able to utilize crosswind energy. Wind tunnel experiments and numerical simulations were conducted simulating the crosswind. The results showed that suctioned updraft speed in the tower was proportional to the crosswind speed, and its conversion rate depended on the tower configuration. A diffuser-shaped tower with a vortex generator achieved to produce the updraft whose speed exceeded the crosswind speed. It was due to the low pressure created by the vortex atop the tower and to the diffuser effect. The crosswind utilization enables the simple power generation device to generate electricity during the night, and the hybrid utilization of renewable energies contributes to the increasing wind energy market.

Research Article

Experimental Study of a Humidification-Dehumidification Seawater Desalination System Combined with the Chimney

The solar humidification-dehumidification system is of high significance to the freshwater supply in remote areas. In the present study, a humidification-dehumidification seawater desalination system combined with the chimney is designed and experimentally evaluated. Main parameters influencing its freshwater productivity are analyzed. It is found from this study that the cooling tower is required to obtain long-term steady freshwater generation. Raising the temperature difference between the evaporation and condensation chambers would lead to the rise of the freshwater productivity. There is a turning wind speed, beyond which increasing the wind speed would lead to the decline of both the freshwater productivity and the thermal efficiency. The turning wind speed is relevant to the ambient humanity and the heating power. Decreasing the heat power would increase the turning wind speed. When the heating power is 4.9 kW, the highest freshwater productivity and the highest efficiency are 48 g/min and 32.14%, respectively.

Research Article

A Photovoltaic Array Fault Diagnosis Method Considering the Photovoltaic Output Deviation Characteristics

There are a large number of photovoltaic (PV) arrays in large-scale PV power plants or regional distributed PV power plants, and the output of different arrays fluctuates with the external conditions. The deviation and evolution information of the array output are easily covered by the random fluctuations of the PV output, which makes the fault diagnosis of PV arrays difficult. In this paper, a fault diagnosis method based on the deviation characteristics of the PV array output is proposed. Based on the current of the PV array on the DC (direct current) side, the deviation characteristics of the PV array output under different arrays and time series are analyzed. Then, the deviation function is constructed to evaluate the output deviation of the PV array. Finally, the fault diagnosis of a PV array is realized by using the probabilistic neural network (PNN), and the effectiveness of the proposed method is verified. The main contributions of this paper are to propose the deviation function that can extract the fault characteristics of PV array and the fault diagnosis method just using the array current which can be easily applied in the PV plant.

Research Article

A New Hybrid Controller for Standalone Photovoltaic Power System with Unbalanced Loads

Due to several problems such as global concern about environmental pollution, renewable energy has become an alternative source of energy. In situations such as small local loads far from the main grid, standalone hybrid power system (HPS) with inevitable unbalanced loading condition is preferred for the global grid. The four-leg inverter with a simple as well as well-performance control method is a good solution to support this condition. In this paper, with respect to the average and discretized model of the inverter, a new digital controller is proposed in the abc reference frame to control the load voltages. The proposed controller offers several advantages such as simplicity, fast dynamic response, no need for transformation among different reference frames, and full compatibility with digital implementation which makes it as an excellent option to be employed in such systems. In addition, a new hybrid controller is also proposed which not only has the advantages of the proposed digital controller but also shows superior performance under nonlinear loads without imposing a high computational burden. To verify the effectiveness of the two proposed controllers, several simulation and experimental tests under different scenarios on a 3 kW setup are performed.

International Journal of Photoenergy
 Journal metrics
Acceptance rate45%
Submission to final decision68 days
Acceptance to publication33 days
CiteScore1.610
Impact Factor2.026
 Submit

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19.