Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2008, Article ID 482373, 12 pages
http://dx.doi.org/10.1155/2008/482373
Research Article

Characterization and Evaluation of the Efficiency of TiO2/Zinc Phthalocyanine Nanocomposites as Photocatalysts for Wastewater Treatment Using Solar Irradiation

1Laboratório de Fotoquímica, Instituto de Química, Universidade Federal de Uberlândia, P.O. Box 593, 38400-902 Uberlândia, MG, Brazil
2Nanobrax, Soluçães Tecnológicas e Prestação de Serviços Ltda., Avenida João Naves de Ávila 2121, Bloco 5L, Sala 05, 38408-100 Uberlândia, MG, Brazil
3German Aerospace Center, Institute of Technical Thermodynamics, Solar Research, Linder Höhe, 51147 Köln Porz, Germany
4German Aerospace Center, Institute of Materials Research, Linder Höhe, 51147 Köln Porz, Germany

Received 28 August 2007; Revised 23 January 2008; Accepted 17 March 2008

Academic Editor: Leonardo Palmisano

Copyright © 2008 Antonio E. H. Machado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical processes for water treatment,” Chemical Reviews, vol. 93, no. 2, 671 pages, 1993. View at Publisher · View at Google Scholar
  2. G. Palmisano, V. Augugliaro, M. Pagliaro, and L. Palmisano, “Photocatalysis: a promising route for 21st century organic chemistry,” Chemical Communications, no. 33, 3425 pages, 2007. View at Publisher · View at Google Scholar
  3. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, 69 pages, 1995. View at Publisher · View at Google Scholar
  4. E. Oliveros, O. Legrini, M. Hohl, T. Müller, and A. M. Braun, “Large scale development of a light-enhanced fenton reaction by optimal experimental design,” Water Science and Technology, vol. 35, no. 4, 223 pages, 1997. View at Publisher · View at Google Scholar
  5. R. L. Ziolli and W. F. Jardim, “Mecanismo de fotodegradação de compostos orgânicos catalisada por TiO2,” Química Nova, vol. 21, no. 3, 319 pages, 1998. View at Publisher · View at Google Scholar
  6. D. M. Blake, “Bibliography of work on photocatalytic removal of hazardous compounds from water and air,” Tech. Rep. NREL/TP-430-22197, National Renewable Energy Laboratory, Golden, Colo, USA, 1999. View at Google Scholar
  7. R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, “Advanced oxidation processes (AOP) for water purification and recovery,” Catalysis Today, vol. 53, no. 1, 51 pages, 1999. View at Publisher · View at Google Scholar
  8. A. E. H. Machado, J. A. de Miranda, R. F. de Freitas et al., “Destruction of the organic matter present in effluent from a cellulose and paper industry using photocatalysis,” Journal of Photochemistry and Photobiology A, vol. 155, no. 1–3, 231 pages, 2003. View at Publisher · View at Google Scholar
  9. C. Sattler, L. de Oliveira, M. Tzschirner, and A. E. H. Machado, “Solar photocatalytic water detoxification of paper mill effluents,” Energy, vol. 29, no. 5-6, 835 pages, 2004. View at Publisher · View at Google Scholar
  10. C. Sattler, K.-H. Funken, L. de Oliveira, M. Tzschirner, and A. E. H. Machado, “Paper mill wastewater detoxification by solar photocatalysis,” Water Science and Technology, vol. 49, no. 4, 189 pages, 2004. View at Google Scholar
  11. A. E. H. Machado, T. P. Xavier, D. R. de Souza et al., “Solar photo-fenton treatment of chip board production waste water,” Solar Energy, vol. 77, no. 5, 583 pages, 2004. View at Publisher · View at Google Scholar
  12. E. T. F. M. Duarte, T. P. Xavier, D. R. de Souza et al., “Construção e estudos de perfomance de um reator fotoquímico tipo CPC (“Compound Parabolic Concentrator”),” Química Nova, vol. 28, no. 5, 921 pages, 2005. View at Publisher · View at Google Scholar
  13. A. E. H. Machado, J. A. Miranda, C. Sattler, and L. Oliveira, “Compósitos de ftalocianina de zinco e óxido de titânio, para emprego em processos fotocatalíticos e método para sua obtenção,” 2005, Brazilian patent no. PI 03009203-3. View at Google Scholar
  14. A. E. H. Machado, J. A. Miranda, C. Sattler, and L. Oliveira, “Zinc phthalocyanine and titanium oxide composites used as, e.g. catalyst for wastewater decontamination, prepared by combining titanium oxide and photosensitizer dye capable of potentializing photocatalytical action of titanium oxide,” 2006, European patent no. EP1646443-A2. View at Google Scholar
  15. A. E. H. Machado and V. Velani, “Fotocatalisadores à base de óxido de titânio, dopados com íons de metais de transição, seu processo de preparação e sua aplicação em processos de descontaminação ambiental,” 2007, Brazilian patent application no. PI 0701120-2. View at Google Scholar
  16. V. Iliev, D. Tomova, L. Bilyarska, L. Prahov, and L. Petrov, “Phthalocyanine modified TiO2 or WO3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light,” Journal of Photochemistry and Photobiology A, vol. 159, no. 3, 281 pages, 2003. View at Publisher · View at Google Scholar
  17. G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano, and M. Schiavello, “Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)-porphyrin or Cu(II)-phthalocyanine,” Journal of Catalysis, vol. 217, no. 2, 334 pages, 2003. View at Publisher · View at Google Scholar
  18. M. Bellardita, M. Addamo, A. Di Paola, and L. Palmisano, “Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films,” Chemical Physics, vol. 339, no. 1–3, 94 pages, 2007. View at Publisher · View at Google Scholar
  19. C. Sattler, L. Oliveira, and C. Jung, “Volume-doped titanium dioxide composite, useful in photocatalytic procedures for decontaminating wastewater and for removing smells from environment, preferably heterogeneous photo catalysis form, comprises zinc phthalocyanine,” 2006, German patent no. DE102004053823-A1. View at Google Scholar
  20. C. H. Langord, M. K. S. Mak, and A. M. Croch, “Photo-catalyst for refractory waste degradation esp. of PCB residues—comprises wide band semiconductor esp. titanium dioxide, coated with pyridine-contg. polymer and metal porphyrin or phthalocyanine dye,” 1991, Canadian and US patent no. US4806514-A; CA1287829-C. View at Google Scholar
  21. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, 338 pages, 2001. View at Publisher · View at Google Scholar
  22. D. Ino, K. Watanabe, N. Takagi, and Y. Matsumoto, “Electron transfer dynamics from organic adsorbate to a semiconductor surface: zinc phthalocyanine on TiO2(110),” Journal of Physical Chemistry B, vol. 109, no. 38, 18018 pages, 2005. View at Publisher · View at Google Scholar
  23. J. M. Rehm, G. L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, and M. Grätzel, “Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface,” Journal of Physical Chemistry, vol. 100, no. 23, 9577 pages, 1996. View at Publisher · View at Google Scholar
  24. M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, 6382 pages, 1993. View at Publisher · View at Google Scholar
  25. J. B. Asbury, E. Hao, Y. Wang, H. N. Ghosh, and T. Lian, “Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films,” Journal of Physical Chemistry B, vol. 105, no. 20, 4545 pages, 2001. View at Publisher · View at Google Scholar
  26. J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, and U. Bach, “High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Applied Physics Letters, vol. 79, no. 13, 2085 pages, 2001. View at Publisher · View at Google Scholar
  27. R. Argazzi, C. A. Bignozzi, G. M. Hasselmann, and G. J. Meyer, “Efficient light-to-electrical energy conversion with dithiocarbamate-ruthenium polypyridyl sensitizers,” Inorganic Chemistry, vol. 37, no. 18, 4533 pages, 1998. View at Publisher · View at Google Scholar
  28. A. P. Xagas, M. C. Bernard, A. Hugot-Le Goff, N. Spyrellis, Z. Loizos, and P. Falaras, “Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid,” Journal of Photochemistry and Photobiology A, vol. 132, no. 1-2, 115 pages, 2000. View at Publisher · View at Google Scholar
  29. K. Tennakone, A. R. Kumarasinghe, G. R. R. A. Kumara, K. G. U. Wijayantha, and P. M. Sirimanne, “Nanoporous TiO2 photoanode sensitized with the flower pigment cyanidin,” Journal of Photochemistry and Photobiology A, vol. 108, no. 2-3, 193 pages, 1997. View at Publisher · View at Google Scholar
  30. G. D. Sharma, S. C. Mathur, and D. C. Dube, “Organic photovoltaic solar cells based on some pure and sensitized dyes,” Journal of Materials Science, vol. 26, no. 24, 6547 pages, 1991. View at Publisher · View at Google Scholar
  31. Y. Hao, M. Yang, C. Yu et al., “Photoelectrochemical studies on acid-doped polyaniline as sensitizer for TiO2 nanoporous film,” Solar Energy Materials and Solar Cells, vol. 56, no. 1, 75 pages, 1998. View at Publisher · View at Google Scholar
  32. C. Chen, X. Qi, and B. Zhou, “Photosensitization of colloidal TiO2 with a cyanine dye,” Journal of Photochemistry and Photobiology A, vol. 109, no. 2, 155 pages, 1997. View at Publisher · View at Google Scholar
  33. T. Wu, S.-J. Xu, J.-Q. Shen, S. Chen, M.-H. Zhang, and T. Shen, “Photosensitization of TiO2 colloid by hypocrellin B in ethanol,” Journal of Photochemistry and Photobiology A, vol. 137, no. 2-3, 191 pages, 2000. View at Publisher · View at Google Scholar
  34. A. M. Braun, M.-T. Maurette, and E. Oliveros, Technologie Photochimique, Presse Romandes, Lausanne, Switzerland, 1986.
  35. R. Gao, J. Stark, D. W. Bahnemann, and J. Rabani, “Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers,” Journal of Photochemistry and Photobiology A, vol. 148, no. 1–3, 387 pages, 2002. View at Publisher · View at Google Scholar
  36. T. Nash, “The colorimetric estimation of formaldehyde by means of the Hantzsch reaction,” The Biochemical Journal, vol. 55, no. 3, 416 pages, 1953. View at Google Scholar
  37. L. Sun and J. R. Bolton, “Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions,” Journal of Physical Chemistry, vol. 100, no. 10, 4127 pages, 1996. View at Publisher · View at Google Scholar
  38. J. Blanco, S. Malato, P. Fernández et al., “Compound parabolic concentrator technology development to commercial solar detoxification applications,” Solar Energy, vol. 67, no. 4–6, 317 pages, 1999. View at Publisher · View at Google Scholar
  39. K.-H. Funken, C. Sattler, B. Milow et al., “A comparison of prototype compound parabolic collector-reactors (CPC) on the road to SOLARDETOX technology,” Water Science and Technology, vol. 44, no. 5, 271 pages, 2001. View at Google Scholar
  40. A. M. Jirka and M. J. Carter, “Micro semi-automated analysis of surface and wastewaters for chemical oxygen demand,” Analytical Chemistry, vol. 47, no. 8, 1397 pages, 1975. View at Publisher · View at Google Scholar
  41. USEPA, “COD ranges 3–150 mg/L and 20–1500 mg/L COD are USEPA approved (5220 D) for wastewater analyses,” Federal Register, vol. 45, no. 78, 26811 pages, 1980. View at Google Scholar
  42. C. C. Leznoff and A. B. P. Lever, Eds., Phthalocyanines: Properties and Applications, vol. 1, VCH Publishers, New York, NY, USA, 1990.
  43. C. C. Leznoff and A. B. P. Lever, Eds., Phthalocyanines: Properties and Applications, vol. 4, VCH Publishers, New York, NY, USA, 1996.
  44. J. A. de Miranda, A. E. H. Machado, and C. A. de Oliveira, “Comparison of the photodynamic action of methylene blue and zinc phthalocyanine on TG-180 tumoral cells,” Journal of Porphyrins and Phthalocyanines, vol. 6, no. 1, 43 pages, 2002. View at Google Scholar
  45. G. Ricciardi, A. Rosa, and E. J. Baerends, “Ground and excited states of zinc phthalocyanine studied by density functional methods,” Journal of Physical Chemistry A, vol. 105, no. 21, 5242 pages, 2001. View at Publisher · View at Google Scholar
  46. K. Szaciłowski, W. Macyk, and G. Stochel, “Synthesis, structure and photoelectrochemical properties of the TiO2-Prussian blue nanocomposite,” Journal of Materials Chemistry, vol. 16, no. 47, 4603 pages, 2006. View at Publisher · View at Google Scholar
  47. S. Senthilarasu, S. Velumani, R. Sathyamoorthy et al., “Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications,” Applied Physics A, vol. 77, no. 3-4, 383 pages, 2003. View at Publisher · View at Google Scholar
  48. D. Meissner and J. Rostalski, “Photovoltaics of interconnected networks,” Synthetic Metals, vol. 121, no. 1–3, 1551 pages, 2001. View at Publisher · View at Google Scholar
  49. J. Mi, L. Guo, Y. Liu, W. Liu, G. You, and S. Qian, “Excited-state dynamics of magnesium phthalocyanine thin film,” Physics Letters A, vol. 310, no. 5-6, 486 pages, 2003. View at Publisher · View at Google Scholar
  50. M. Hoffmann, Frenkel and charge-transfer excitons in quasi-one-dimensional molecular crystals with strong intermolecular overlap, Ph.D. thesis, Technischen Universität Dresden, Dresden, Germany, 2000.
  51. J. Mizuguchi and S. Matsumoto, “Molecular distortion and exciton coupling effects in β metal-free phthalocyanine,” Journal of Physical Chemistry A, vol. 103, no. 5, 614 pages, 1999. View at Publisher · View at Google Scholar
  52. A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill, New York, NY, USA, 1962.
  53. H. Fidder, J. Knoester, and D. A. Wiersma, “Optical properties of disordered molecular aggregates: a numerical study,” Journal of Chemical Physics, vol. 95, no. 11, 7880 pages, 1991. View at Publisher · View at Google Scholar
  54. O.-K. Kim, J. Je, G. Jernigan, L. Buckley, and D. Whitten, “Super-helix formation induced by cyanine J-aggregates onto random-coil carboxymethyl amylose as template,” Journal of the American Chemical Society, vol. 128, no. 2, 510 pages, 2006. View at Publisher · View at Google Scholar
  55. G. D. Sharma, R. Kumar, and M. S. Roy, “Investigation of charge transport, photo generated electron transfer and photovoltaic response of iron phthalocyanine (FePc): TiO2 thin films,” Solar Energy Materials and Solar Cells, vol. 90, no. 1, 32 pages, 2006. View at Publisher · View at Google Scholar
  56. M. Hilgendorff and V. Sundström, “Ultrafast electron injection and recombination dynamics of dye sensitised TiO2 particles,” Chemical Physics Letters, vol. 287, no. 5-6, 709 pages, 1998. View at Publisher · View at Google Scholar
  57. J. B. Asbury, R. J. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik, and T. Lian, “Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films,” Journal of Physical Chemistry B, vol. 103, no. 16, 3110 pages, 1999. View at Publisher · View at Google Scholar
  58. S. Iwai, S. Murata, R. Katoh, M. Tachiya, K. Kikuchi, and Y. Takahashi, “Ultrafast charge separation and exciplex formation induced by strong interaction between electron donor and acceptor at short distances,” Journal of Chemical Physics, vol. 112, no. 16, 7111 pages, 2000. View at Publisher · View at Google Scholar
  59. V. Gulbinas, M. Chachisvilis, L. Valkunas, and V. Sundström, “Excited state dynamics of phthalocyanine films,” Journal of Physical Chemistry, vol. 100, no. 6, 2213 pages, 1996. View at Publisher · View at Google Scholar
  60. A. Terasaki, M. Hosoda, T. Wada et al., “Femtosecond spectroscopy of vanadyl phthalocyanines in various molecular arrangements,” Journal of Physical Chemistry, vol. 96, no. 25, 10534 pages, 1992. View at Publisher · View at Google Scholar
  61. Y. Sakakibara, R. N. Bera, T. Mizutani, K. Ishida, M. Tokumoto, and T. Tani, “Photoluminescence properties of magnesium, chloroaluminum, bromoaluminum, and metal-free phthalocyanine solid films,” Journal of Physical Chemistry B, vol. 105, no. 8, 1547 pages, 2001. View at Publisher · View at Google Scholar
  62. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution,” Journal of Physical and Chemical Reference Data, vol. 17, no. 2, 513 pages, 1988. View at Google Scholar
  63. N. Motohashi and Y. Saito, “Competitive measurement of rate constants for hydroxyl radical reactions using radiolytic hydroxylation of benzoate,” Chemical and Pharmaceutical Bulletin, vol. 41, no. 10, 1842 pages, 1993. View at Google Scholar
  64. C.-Y. Wang, J. Rabani, D. W. Bahnemann, and J. K. Dohrmann, “Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts,” Journal of Photochemistry and Photobiology A, vol. 148, no. 1–3, 169 pages, 2002. View at Publisher · View at Google Scholar
  65. N. Serpone, G. Sauvé, R. Koch et al., “Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis: relative photonic efficiencies ?r,” Journal of Photochemistry and Photobiology A, vol. 94, no. 2-3, 191 pages, 1996. View at Publisher · View at Google Scholar
  66. C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, “Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions,” Environmental Science and Technology, vol. 25, no. 3, 494 pages, 1991. View at Publisher · View at Google Scholar
  67. J. R. Darwent, P. Douglas, A. Harriman, G. Porter, and M. C. Richoux, “Metal phthalocyanines and porphyrins as photosensitisers for reduction of water to hydrogen,” Coordination Chemistry Reviews, vol. 44, no. 1, 83 pages, 1982. View at Publisher · View at Google Scholar
  68. J. G. Moser, Photodynamic Tumor Therapy: 2nd and 3rd Generation Photosensitizers, Harwood Academic, Amsterdam, The Netherlands, 1998.
  69. X. H. Qiu, G. V. Nazin, and W. Ho, “Mechanisms of reversible conformational transitions in a single molecule,” Physical Review Letters, vol. 93, no. 19, Article ID 196806, 4 pages, 2004. View at Publisher · View at Google Scholar
  70. H. Donker, A. van Hoek, W. van Schaik, R. B. M. Koehorst, M. M. Yatskou, and T. J. Schaafsma, “Spectroscopy and photophysics of self-organized zinc porphyrin nanolayers. 2. Transport properties of singlet excitation,” Journal of Physical Chemistry B, vol. 109, no. 36, 17038 pages, 2005. View at Publisher · View at Google Scholar