Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2009, Article ID 238615, 6 pages
http://dx.doi.org/10.1155/2009/238615
Research Article

Synthesis of Novel Iono- and Photochromic Spiropyrans Derived from 6,7-Dihydroxy-8-Formyl-4-Methyl-2H-Chromene-2-One

1Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov on Don, Russia
2Southern Scientific Center of Russian Academy of Sciences, 344006 Rostov on Don, Russia

Received 31 March 2009; Accepted 29 May 2009

Academic Editor: Mohamed Sabry Abdel-Mottaleb

Copyright © 2009 Olga G. Nikolaeva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. O. Bulanov, L. D. Popov, G. I. Bondarenko, and V. A. Kogan, “New binuclear copper(II) complexes with bishydrazones derived from spiropyran of the benzoxazinonium series,” Russian Journal of General Chemistry, vol. 76, no. 8, pp. 1272–1274, 2006. View at Publisher · View at Google Scholar
  2. A. O. Bulanov, B. S. Luk'yanov, V. A. Kogan, and V. V. Lukov, “Binuclear copper(II) complexes with hydrazones containing spiropyran fragment,” Russian Journal of Coordination Chemistry, vol. 29, no. 9, pp. 658–659, 2003. View at Publisher · View at Google Scholar
  3. X. Guo, D. Zhang, and D. Zhu, “Photocontrolled electron transfer reaction between a new dyad, tetrathiafulvalene-photochromic spiropyran, and ferric ion,” Journal of Physical Chemistry B, vol. 108, no. 1, pp. 212–217, 2004. View at Google Scholar
  4. M. V. Alfimov, O. A. Fedorova, and S. P. Gromov, “Photoswitchable molecular receptors,” Journal of Photochemistry and Photobiology A, vol. 158, no. 2-3, pp. 183–198, 2003. View at Publisher · View at Google Scholar
  5. K. Kimura, H. Sakamoto, and M. Nakamura, “Molecular design and applications of photochromic crown compounds—how can we manipulate metal ions photochemically?” Bulletin of the Chemical Society of Japan, vol. 76, no. 2, pp. 225–245, 2003. View at Publisher · View at Google Scholar
  6. A. M. A. Salhin, M. Tanaka, K. Kamada et al., “Decisive factors in the photoisomerization behavior of crowned spirobenzopyrans: metal ion interaction with crown ether and phenolate anion moieties,” European Journal of Organic Chemistry, no. 4, pp. 655–662, 2002. View at Google Scholar
  7. N. Shao, Y. Zhang, S. Cheung et al., “Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative,” Analytical Chemistry, vol. 77, no. 22, pp. 7294–7303, 2005. View at Publisher · View at Google Scholar
  8. B. G. Jeliazkova, S. Minkovska, and T. Deligeorgiev, “Effect of complexation on the photochromism of 5-(benzothiazol-2-yl)spiroindolinonaphthooxazines in polar solvents,” Journal of Photochemistry and Photobiology A, vol. 171, no. 2, pp. 153–160, 2005. View at Publisher · View at Google Scholar
  9. A. V. Chernyshev, N. A. Voloshin, I. M. Raskita, A. V. Metelitsa, and V. I. Minkin, “Photo- and ionochromism of 5-(4,5-diphenyl-1,3-oxazol-2-yl) substituted spiro[indoline-naphthopyrans],” Journal of Photochemistry and Photobiology A, vol. 184, no. 3, pp. 289–297, 2006. View at Publisher · View at Google Scholar
  10. N. A. Voloshin, A. V. Chernyshev, A. V. Metelitsa, I. M. Raskita, E. N. Voloshina, and V. I. Minkin, “Synthesis of photochromic 5-(4,5-diphenyl-1,3-oxazol-2-yl)-spiro[indoline-2,3-naphtho[2,3-b] pyran],” Russian Chemical Bulletin, vol. 54, no. 3, pp. 705–710, 2005. View at Publisher · View at Google Scholar
  11. R. A. Kopelman, S. M. Snyder, and N. L. Frank, “Tunable photochromism of spirooxazines via metal coordination,” Journal of the American Chemical Society, vol. 125, no. 45, pp. 13684–13685, 2003. View at Publisher · View at Google Scholar
  12. J. D. Winkler, C. M. Bowen, and V. Michelet, “Photodynamic fluorescent metal ion sensors with parts per billion sensitivity,” Journal of the American Chemical Society, vol. 120, no. 13, pp. 3237–3242, 1998. View at Publisher · View at Google Scholar
  13. N. A. Voloshin, A. V. Chernyshev, A. V. Metelitsa et al., “Photochromic spiro[indoline-pyridobenzopyrans]: fluorescent metal-ion sensors,” Archive for Organic Chemistry, vol. 11, pp. 16–24, 2004. View at Google Scholar
  14. M. S. Attia, M. M. H. Khalil, M. S. A. Abdel-Mottaleb, M. B. Lukyanova, Yu. A. Alekseenko, and B. Lukyanov, “Effect of complexation with lanthanide metal ions on the photochromism of (1,3,3-trimethyl-5-hydroxy-6-formyl-indoline-spiro2,2-[2h] chromene) in different media,” International Journal of Photoenergy, vol. 2006, Article ID 42846, 9 pages, 2006. View at Publisher · View at Google Scholar
  15. Z. Liu, L. Jiang, Z. Liang, and Y. Gao, “Photo-switchable molecular devices based on metal-ionic recognition,” Tetrahedron Letters, vol. 46, no. 5, pp. 885–887, 2005. View at Publisher · View at Google Scholar
  16. A. Abdullah, C. J. Roxburgh, and P. G. Sammes, “Photochromic crowned spirobenzopyrans: quantitative metal-ion chelation by UV, competitive selective ion-extraction and metal-ion transportation demonstration studies,” Dyes and Pigments, vol. 76, no. 2, pp. 319–326, 2008. View at Publisher · View at Google Scholar
  17. M. Tanaka, K. Kamada, H. Ando, T. Kitagaki, Y. Shibutani, and K. Kimura, “Synthesis and photochromism of crowned spirobenzothiapyran: facilitated photoisomerization by cooperative complexation of crown ether and thiophenolate moieties with metal ions,” Journal of Organic Chemistry, vol. 65, no. 14, pp. 4342–4347, 2000. View at Publisher · View at Google Scholar
  18. R. T. F. Jukes, B. Bozic, F. Hartl, P. Belser, and L. de Cola, “Synthesis, photophysical, photochemical, and redox properties of nitrospiropyrans substituted with Ru or Os tris(bipyridine) complexes,” Inorganic Chemistry, vol. 45, no. 20, pp. 8326–8341, 2006. View at Publisher · View at Google Scholar
  19. V. V. Korolev, D. Yu. Vorobyev, E. M. Glebov et al., “Spironaphtoxazines produced from crown-containing dihydroisoquinolines: synthesis and spectroscopic study of cation-dependent photochromism,” Journal of Photochemistry and Photobiology A, vol. 192, no. 2-3, pp. 75–83, 2007. View at Publisher · View at Google Scholar
  20. V. Lokshin, A. Samat, and A. V. Metelitsa, “Spirooxazines: synthesis, structure, spectral and photochromic properties,” Russian Chemical Reviews, vol. 71, no. 11, pp. 893–916, 2002. View at Publisher · View at Google Scholar
  21. M. Beck and I. Nagypal, Chemistry of Complex Equilibria, Academiai Kiado, Budapest, Hungary, 1989.