Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2011, Article ID 273683, 11 pages
http://dx.doi.org/10.1155/2011/273683
Research Article

TiO2/Chitosan-NH4I(+I2)-BMII-Based Dye-Sensitized Solar Cells with Anthocyanin Dyes Extracted from Black Rice and Red Cabbage

1Centre for Ionics University Malaya, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Centre for Foundation Studies, International Islamic University Malaysia, Jalan Universiti, 46350 Petaling Jaya, Selangor, Malaysia
3Department of Physics, University of Peradeniya, 20400 Peradeniya, Sri Lanka
4Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 8 July 2011; Revised 26 August 2011; Accepted 2 September 2011

Academic Editor: Gaetano Di Marco

Copyright © 2011 M. H. Buraidah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C, vol. 4, no. 2, pp. 145–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Karuppuchamy, J. M. Jeong, D. P. Amalnerkar, and H. Minoura, “Photoinduced hydrophilicity of titanium dioxide thin films prepared by cathodic electrodeposition,” Vacuum, vol. 80, no. 5, pp. 494–498, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Longo and M. A. De Paoli, “Dye-sensitized solar cells: a successful combination of materials,” Journal of the Brazilian Chemical Society, vol. 14, no. 6, pp. 889–901, 2003. View at Google Scholar · View at Scopus
  4. K. M. Lee, W. H. Chiu, H. Y. Wei et al., “Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells,” Thin Solid Films, vol. 518, no. 6, pp. 1716–1721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Wu, Q. Li, L. Fan et al., “High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells,” Journal of Power Sources, vol. 181, no. 1, pp. 172–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Li, J. Wu, Q. Tang et al., “Application of microporous polyaniline counter electrode for dye-sensitized solar cells,” Electrochemistry Communications, vol. 10, no. 9, pp. 1299–1302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Denaro, V. Baglio, M. Girolamo et al., “Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells,” Journal of Applied Electrochemistry, vol. 39, no. 11, pp. 2173–2179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. I. Nakamura, and K. Murata, “High-performance carbon counter electrode for dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 79, no. 4, pp. 459–469, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. T. N. Murakami and M. Grätzel, “Counter electrodes for DSC: application of functional materials as catalysts,” Inorganica Chimica Acta, vol. 361, no. 3, pp. 572–580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zhu, H. Zeng, V. Subramanian, C. Masarapu, K. H. Hung, and B. Wei, “Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes,” Nanotechnology, vol. 19, no. 46, Article ID 465204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Calogero, F. Bonaccorso, O. M. Maragò, P. G. Gucciardi, and G. Di Marco, “Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells,” Dalton Transactions, vol. 39, no. 11, pp. 2903–2909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Y. Yen, C. Y. Yen, S. H. Liao et al., “A novel carbon-based nanocomposite plate as a counter electrode for dye-sensitized solar cells,” Composites Science and Technology, vol. 69, no. 13, pp. 2193–2197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Calogero, P. Calandra, A. Irrera, A. Sinopoli, I. Citro, and G. Di Marco, “A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells,” Energy and Environmental Science, vol. 4, no. 5, pp. 1838–1844, 2011. View at Publisher · View at Google Scholar
  14. K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination Chemistry Reviews, vol. 177, no. 1, pp. 347–414, 1998. View at Google Scholar · View at Scopus
  15. M. K. Nazeeruddin, S. M. Zakeeruddin, J. J. Lagref et al., “Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1317–1328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Klein, M. K. Nazeeruddin, P. Liska et al., “Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity,” Inorganic Chemistry, vol. 44, no. 2, pp. 178–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Wang, B. Wenger, R. Humphry-Baker et al., “Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids,” Journal of the American Chemical Society, vol. 127, no. 18, pp. 6850–6856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Amao and T. Komori, “Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode,” Biosensors and Bioelectronics, vol. 19, no. 8, pp. 843–847, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Hao, J. Wu, Y. Huang, and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell,” Solar Energy, vol. 80, no. 2, pp. 209–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Wongcharee, V. Meeyoo, and S. Chavadej, “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Solar Energy Materials and Solar Cells, vol. 91, no. 7, pp. 566–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Ø. M. Andersen, T. Fossen, K. Torskangerpoll, A. Fossen, and U. Hauge, “Anthocyanin from strawberry (Fragaria ananassa) with the novel aglycone, 5-carboxypyranopelargonidin,” Phytochemistry, vol. 65, no. 4, pp. 405–410, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Olea, G. Ponce, and P. J. Sebastian, “Electron transfer via organic dyes for solar conversion,” Solar Energy Materials and Solar Cells, vol. 59, no. 1, pp. 137–143, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Dai and J. Rabani, “Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium,” New Journal of Chemistry, vol. 26, no. 4, pp. 421–426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. P. M. Sirimanne, M. K. I. Senevirathna, E. Premalal, P. K. D. D. P. Pitigala, V. Sivakumar, and K. Tennakone, “Utilization of natural pigment extracted from pomegranate fruits as sensitizer in solid-state solar cells,” Journal of Photochemistry and Photobiology A, vol. 177, no. 2-3, pp. 324–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. A. Gitelson, M. N. Merzlyak, and O. B. Chivkunova, “Optical properties and nondestructive estimation of anthocyanin content in plant leaves,” Photochemistry and Photobiology, vol. 74, no. 1, pp. 38–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. S. H. Nam, S. M. Chang, and M. Y. Kang, “Screening of mutagenicity and antimutagenic activity against chemical direct mutagens of ethanolic extracts from colored rice bran,” Journal of the Korean society of Agricultural Chemistry and Biotechnology, vol. 45, pp. 195–202, 2002. View at Google Scholar
  27. C. Hu, J. Zawistowski, W. Ling, and D. D. Kitts, “Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems,” Journal of Agricultural and Food Chemistry, vol. 51, no. 18, pp. 5271–5277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Xu, J. Wu, Y. Zhang, X. Hu, X. Liao, and Z. Wang, “Extraction of anthocyanins from red cabbage using high pressure CO2,” Bioresource Technology, vol. 101, no. 18, pp. 7151–7157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. G. J. McDougall, S. Fyffe, P. Dobson, and D. Stewart, “Anthocyanins from red cabbage—stability to simulated gastrointestinal digestion,” Phytochemistry, vol. 68, no. 9, pp. 1285–1294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Chigurupati, L. Saiki, C. Gayser, and A. K. Dash, “Evaluation of red cabbage dye as a potential natural color for pharmaceutical use,” International Journal of Pharmaceutics, vol. 241, no. 2, pp. 293–299, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Zhang, N. Yamamoto, T. Yoshida, and H. Minoura, “Natural dye-sensitized solar cells,” Transactions of the Materials Research Society of Japan, vol. 27, no. 4, pp. 811–814, 2002. View at Google Scholar
  32. S. Furukawa, H. Iino, K. Kukita, and K. Kaminosono, “Effects of pH of dyes on characteristics of dye-sensitized solar cells,” IEEJ Transactions on Fundamentals and Materials, vol. 130, no. 2, pp. 136–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. O. A. Ileperuma, M. A. K. L. Dissanayake, S. Somasunderam, and L. R. A. K. Bandara, “Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes,” Solar Energy Materials and Solar Cells, vol. 84, no. 1–4, pp. 117–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Gerischer, “Electrochemical photo and solar cells principles and some experiments,” Journal of Electroanalytical Chemistry, vol. 58, no. 1, pp. 263–274, 1975. View at Google Scholar · View at Scopus
  36. J. Wu, P. Li, S. Hao, H. Yang, and Z. Lan, “A polyblend electrolyte (PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells,” Electrochimica Acta, vol. 52, no. 17, pp. 5334–5338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. A. Mohamad, M. H. Ali, R. Yahya, Z. A. Ibrahim, and A. K. Arof, “Photovoltaic activity in a ZnSe/PEO-chitosan blend electrolyte junction,” Ionics, vol. 13, no. 4, pp. 235–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. S. A. Mohamad, R. Yahya, Z. A. Ibrahim, and A. K. Arof, “Photovoltaic activity in a ZnTe/PEO-chitosan blend electrolyte junction,” Solar Energy Materials and Solar Cells, vol. 91, no. 13, pp. 1194–1198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. V. C. Nogueira, C. Longo, A. F. Nogueira, M. A. Soto-Oviedo, and M. A. D. Paoli, “Solid-state dye-sensitized solar cell: improved performance and stability using a plasticized polymer electrolyte,” Journal of Photochemistry and Photobiology A, vol. 181, no. 2-3, pp. 226–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. A. Haque, E. Palomares, H. M. Upadhyaya et al., “Flexible dye sensitised nanocrystalline semiconductor solar cells,” Chemical Communications, vol. 9, no. 24, pp. 3008–3009, 2003. View at Google Scholar · View at Scopus
  41. O. A. Ileperuma, M. A. K. L. Dissanayake, and S. Somasundaram, “Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes,” Electrochimica Acta, vol. 47, no. 17, pp. 2801–2807, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Wang, S. M. Zakeeruddin, J. E. Moser, and M. Grätzel, “A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 107, no. 48, pp. 13280–13285, 2003. View at Google Scholar · View at Scopus
  43. N. Yamanaka, R. Kawano, W. Kubo et al., “Dye-sensitized TiO2 solar cells using imidazolium-type ionic liquid crystal systems as effective electrolytes,” Journal of Physical Chemistry B, vol. 111, no. 18, pp. 4763–4769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Grätzel, “Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7732–7733, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. Q. Dai, D. B. Menzies, D. R. MacFarlane et al., “Dye-sensitized nanocrystalline solar cells incorporating ethylmethylimidazolium-based ionic liquid electrolytes,” Comptes Rendus Chimie, vol. 9, no. 5-6, pp. 617–621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, and M. Forsyth, “Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases,” Journal of Physical Chemistry B, vol. 103, no. 20, pp. 4164–4170, 1999. View at Google Scholar · View at Scopus
  47. E. I. Cooper and E. J. M. O'Sullivan, Proceedings of the Eight International Symposium on Molten Salts, R. J.Gale, G. Blomgren, and H. Kojima, Eds., The Electrochemical Society Proceedings Series, The Electrochemical Society, Pennington, NJ, USA, 1992.
  48. J. Wu, Z. Lan, S. Hao et al., “Progress on the electrolytes for dye-sensitized solar cells,” Pure and Applied Chemistry, vol. 80, no. 11, pp. 2241–2258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. A. K. Arof, M. H. Buraidah, L. P. Teo, S. R. Majid, R. Yahya, and R. M. Taha, “Characterizations of chitosan-based polymer electrolyte photovoltaic cells,” International Journal of Photoenergy, vol. 2010, Article ID 805836, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Calogero and G. D. Marco, “Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1341–1346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. P. M. Sirimanne and T. Soga, “Fabrication of a solid-state cell using vitamin C as sensitizer,” Solar Energy Materials and Solar Cells, vol. 80, no. 3, pp. 383–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. N. Ryu, S. Z. Park, and C. T. Ho, “High performance liquid chromotographic determination of anthocyanin pigments in some varieties of black rice,” Journal of Food and Drug Analysis, vol. 6, no. 4, pp. 729–736, 1998. View at Google Scholar · View at Scopus
  53. A. Bakowska, A. Z. Kucharska, and J. Oszmiański, “The effects of heating, UV irradiation, and storage on stability of the anthocyanin-polyphenol copigment complex,” Food Chemistry, vol. 81, no. 3, pp. 349–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Castañeda-Ovando, Ma. d. L. Pacheco-Hernández, Ma. E. Páez-Hernández, J. A. Rodríguez, and C. A. Galán-Vidal, “Chemical studies of anthocyanins: a review,” Food Chemistry, vol. 113, no. 4, pp. 859–871, 2009. View at Publisher · View at Google Scholar
  55. G. Fan, Y. Han, Z. Gu, and F. Gu, “Composition and colour stability of anthocyanins extracted from fermented purple sweet potato culture,” Food Science and Technology, vol. 41, no. 8, pp. 1412–1416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. R. C. Fernando and G. K. R. Senadeera, “Natural anthocyanins as photosensitizers for dye-sensitized solar devices,” Current Science, vol. 95, no. 5, pp. 663–666, 2008. View at Google Scholar · View at Scopus
  57. G. Calogero, G. Di Marco, S. Caramori, S. Cazzanti, R. Argazzi, and C. A. Bignozzi, “Natural dye senstizers for photoelectrochemical cells,” Energy and Environmental Science, vol. 2, no. 11, pp. 1162–1172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, and Y. S. Kang, “Poly(butyl acrylate)/NaI/I2 electrolytes for dye-sensitized nanocrystalline TiO2 solar cells,” Solid State Ionics, vol. 176, no. 5-6, pp. 579–584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. P. K. Singh, K. W. Kim, and H. W. Rhee, “Development and characterization of ionic liquid doped solid polymer electrolyte membranes for better efficiency,” Synthetic Metals, vol. 159, no. 15-16, pp. 1538–1541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Calogero, G. Di Marco, S. Cazzanti et al., “Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits,” International Journal of Molecular Sciences, vol. 11, no. 1, pp. 254–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Calandra, G. Calogero, A. Sinopoli, and P. G. Gucciardi, “Metal nanoparticles and carbon-based nanostructures as advanced materials for cathode application in dye-sensitized solar cells,” International Journal of Photoenergy, vol. 2010, Article ID 109495, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, “Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode,” Electrochimica Acta, vol. 53, no. 6, pp. 2890–2896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Furukawa, H. Iino, T. Iwamoto, K. Kukita, and S. Yamauchi, “Characteristics of dye-sensitized solar cells using natural dye,” Thin Solid Films, vol. 518, no. 2, pp. 526–529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Yuliarto, W. Septina, K. Fuadi, F. Fanani, L. Muliani, and Nugraha, “Synthesis of nanoporous TiO2 and its potential applicability for dye-sensitized solar cell using antocyanine black rice,” Advances in Materials Science and Engineering, vol. 2010, Article ID 789541, 6 pages, 2010. View at Publisher · View at Google Scholar
  65. S. Ito, T. Saitou, H. Imahori, H. Uehara, and N. Hasegawa, “Fabrication of dye-sensitized solar cells using natural dye for food pigment: Monascus yellow,” Energy and Environmental Science, vol. 3, no. 7, pp. 905–909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. S. Polo and N. Y. Murakami Iha, “Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba,” Solar Energy Materials and Solar Cells, vol. 90, no. 13, pp. 1936–1944, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Zhou, L. Wu, Y. Gao, and T. Ma, “Dye-sensitized solar cells using 20 natural dyes as sensitizers,” Journal of Photochemistry and Photobiology A, vol. 219, no. 2-3, pp. 188–194, 2011. View at Publisher · View at Google Scholar