Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2011, Article ID 570103, 9 pages
http://dx.doi.org/10.1155/2011/570103
Research Article

Theoretical Investigation on the Electronic and Optical Properties of Poly(fluorenevinylene) Derivatives as Light-Emitting Materials

1Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2Department of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
3Department of Chemistry, Faculty of Liberal Arts & Science, Kasetsart University Kamphaeng Saen Campus, Khamphaeng Saen, Nakhon Pathom 73140, Thailand
4Center for Organic Electronics and Polymers, Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
5Department of Chemistry, Faculty of Science, Kasetsart University, Jatuchak, Bangkok 10900, Thailand

Received 5 April 2011; Accepted 10 June 2011

Academic Editor: F. Yakuphanoglu

Copyright © 2011 Thanisorn Yakhanthip et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Xiong, W. Xu, C. Li et al., “Utilizing white OLED for full color reproduction in flat panel display,” Organic Electronics, vol. 9, no. 4, pp. 533–538, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Bao, A. J. Lovinger, and J. Brown, “New air-stable n-channel organs thin film transistors,” Journal of the American Chemical Society, vol. 120, no. 1, pp. 207–208, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Advanced Funtional Materials, vol. 11, no. 1, pp. 15–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, 1990. View at Google Scholar · View at Scopus
  5. Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, “Blue electroluminescent diodes utilizing poly(alkylfluorene),” Japanese Journal of Applied Physics, vol. 30, pp. L1941–L1943, 1991. View at Publisher · View at Google Scholar
  6. M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Nondispersive hole transport in an electroluminescent polyfluorene,” Applied Physics Letters, vol. 73, no. 11, pp. 1565–1567, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Neher, “Polyfluorene homopolymers: conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence,” Macromolecular Rapid Communications, vol. 22, no. 17, pp. 1365–1385, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Scherf and E. J. W. List, “Semiconducting polyfluorenes—towards reliable structure-property relationships,” Advanced Materials, vol. 14, no. 7, pp. 477–487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Yang, J. K. Feng, Y. Liao, and A. M. Ren, “A theoretical investigation on the electronic and optical properties of π-conjugated copolymers with an efficient electron-accepting unit bithieno[3,2-b:23-e]pyridine,” Polymer, vol. 46, no. 23, pp. 9955–9964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Meeto, S. Suramitr, V. Lukes, P. Wolschann, and S. Hannongbua, “Effects of the CN and NH2 substitutions on the geometrical and optical properties of model vinylfluorenes, based on DFT calculations,” Journal of Molecular Structure, vol. 939, no. 1–3, pp. 75–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. H. Jin, H. J. Park, J. Y. Kim et al., “Poly(fluorenevinylene) derivative by Gilch polymerization for light-emitting diode applications,” Macromolecules, vol. 35, no. 20, pp. 7532–7534, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. D. Yang, J. K. Feng, and A. M. Ren, “Spiro-linked oligofluorenes and derivatives: molecular design and theoretical study of one- and two-photon absorption properties,” Chemical Physics Letters, vol. 461, no. 1–3, pp. 9–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Zeng, S. J. Chua, and W. Huang, “Influence of donor and acceptor substituents on the electronic characteristics of poly(fluorene-phenylene),” Thin Solid Films, vol. 417, no. 1-2, pp. 194–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Meeto, S. Suramitr, S. Vannarat, and S. Hannongbua, “Structural and electronic properties of poly(fluorene-vinylene) copolymer and its derivatives: time-dependent density functional theory investigation,” Chemical Physics, vol. 349, no. 1–3, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Donat-Bouillud, I. Levesque, Y. Tao et al., “Light-emitting diodes from fluorene-based π-conjugated polymers,” Chemistry of Materials, vol. 12, no. 7, pp. 1931–1936, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Zhou, A. M. Ren, and J. K. Feng, “Theoretical investigation on the ground- and excited-state properties of novel octupolar oligothiophene-functionalized truxenes and dipolar analogs,” Polymer, vol. 45, no. 22, pp. 7747–7757, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Yang, J. K. Feng, Y. Liao, and A. M. Ren, “Theoretical studies on the electronic and optical properties of two blue-emitting fluorene-pyridine-based copolymers,” Optical Materials, vol. 29, no. 6, pp. 642–650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4, pp. A1133–A1138, 1965. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Petersilka, U. J. Gossmann, and E. K. U. Gross, “Excitation energies from time-dependent density-functional theory,” Physical Review Letters, vol. 76, no. 8, pp. 1212–1215, 1996. View at Google Scholar
  20. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” The Journal of Physical Chemistry, vol. 96, no. 1, pp. 135–149, 1992. View at Google Scholar · View at Scopus
  21. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar
  22. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” The Journal of Chemical Physics, vol. 98, no. 7, pp. 5648–5652, 1993. View at Google Scholar · View at Scopus
  23. K. Sriwichitkamol, S. Suramitr, P. Poolmee, and S. Hannongbua, “Structures, absorption spectra, and electronic properties of polyfluorene and its derivatives: a theoretical study,” Journal of Theoretical and Computational Chemistry, vol. 5, no. 3, pp. 595–608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Poolmee and S. Hannongbua, “Theoretical investigation on energy gap of fluorene-thiophene copolymer,” Journal of Theoretical and Computational Chemistry, vol. 3, no. 4, pp. 481–489, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Tirapattur, M. Belletête, M. Leclerc, and G. Durocher, “Study of excited state properties of oligofluorenes by the singles configuration interaction (CIS) theoretical approach,” Journal of Molecular Structure, vol. 625, no. 1–3, pp. 141–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Yang, A. M. Ren, J. K. Feng, and J. F. Wang, “Theoretical investigation of optical and electronic property modulations of π-conjugated polymers based on the electron-rich 3,6-dimethoxy-fluorene unit,” Journal of Organic Chemistry, vol. 70, no. 8, pp. 3009–3020, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. P. F. Van Hutten, V. V. Krasnikov, and G. Hadziioannou, “A model oligomer approach to light-emitting semiconducting polymers,” Accounts of Chemical Research, vol. 32, no. 3, pp. 257–265, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. K. T. Wong, C. F. Wang, C. H. Chou, Y. O. Su, G. H. Lee, and S. M. Peng, “Synthesis and properties of novel thiophene-based conjugated homologues: 9,9-diphenylfluorene-capped oligothiophenes,” Organic Letters, vol. 4, no. 25, pp. 4439–4442, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Ma, S. Li, and Y. Jiang, “A time-dependent DFT study on band gaps and effective conjugation lengths of polyacetylene, polyphenylene, polypentafulvene, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, and polythiophene,” Macromolecules, vol. 35, no. 3, pp. 1109–1115, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria et al., “Gaussian 03”, Gaussian, Inc., Pittsburgh, PA, 2003.
  31. P. Anuragudom, Persononal Communication.
  32. S. H. Jin, S. Y. Kang, M. Y. Kim et al., “Synthesis and electroluminescence properties of poly(9,9-di-n-octylfluorenyl-2,7-vinylene) derivatives for light-emitting display,” Macromolecules, vol. 36, no. 11, pp. 3841–3847, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Jungsuttiwong, S. Namuangrak, V. Promarak, T. Sudyoadsuk, and S. Vannarat, “Computer-aided design of OLED materials: a molecular modeling approach for optical properties of α-fluorenyl oligothiophenes,” Journal of Theoretical and Computational Chemistry, vol. 9, no. 6, pp. 993–1007, 2010. View at Publisher · View at Google Scholar
  34. D. J. Tozer and N. C. Handy, “Improving virtual Kohn-Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities,” Journal of Chemical Physics, vol. 109, no. 23, pp. 10180–10189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. C. P. Hsu, S. Hirata, and M. Head-Gordon, “Excitation energies from time-dependent density functional theory for linear polyene oligomers: butadiene to decapentaene,” The Journal of Physical Chemistry A, vol. 105, no. 2, pp. 451–458, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. L. Cai, K. Sendt, and J. R. Reimers, “Failure of density-functional theory and time-dependent density-functional theory for large extended π systems,” Journal of Chemical Physics, vol. 117, no. 12, pp. 5543–5549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Kurashige, T. Nakajima, S. Kurashige, K. Hirao, and Y. Nishikitani, “Theoretical investigation of the excited states of coumarin dyes for dye-sensitized solar cells,” The Journal of Physical Chemistry A, vol. 111, no. 25, pp. 5544–5548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, Longman, London, UK, 1983.