Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 103672, 8 pages
http://dx.doi.org/10.1155/2012/103672
Research Article

Enhancement of Photocatalytic Activity of ZnO/SiO2 by Nanosized Pt for Photocatalytic Degradation of Phenol in Wastewater

1Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box. 80203, Jeddah 21589, Saudi Arabia
2Nanostructured Materials and Nanotechnology Division, Advanced Materials Department, Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt
3Department of Environmental Sciences, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
4Minerals Technology Department, Central Metallurgical Research & Development Institute (CMRDI), Cairo 11421, Egypt

Received 20 March 2012; Revised 24 May 2012; Accepted 2 June 2012

Academic Editor: Manickavachagam Muruganandham

Copyright © 2012 R. M. Mohamed and M. A. Barakat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: revisited,” Applied Catalysis A, vol. 304, no. 1-2, pp. 55–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Mrowetz and E. Selli, “Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions,” Journal of Photochemistry and Photobiology A, vol. 180, no. 1-2, pp. 15–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Pauporté and J. Rathouský, “Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants,” Journal of Physical Chemistry C, vol. 111, no. 21, pp. 7639–7644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Yu and X. Yu, “Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres,” Environmental Science and Technology, vol. 42, no. 13, pp. 4902–4907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. H. Sun, S. Y. Dong, Y. K. Wang, and S. P. Sun, “Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 1520–1526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Zhou, J. Yu, and B. Cheng, Journal of Hazardous Materials, vol. 137, 2006.
  7. C. F. Klingshirn, “ZnO: material, physics and applications,” ChemPhysChem, vol. 8, no. 6, pp. 782–803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Singhal, S. N. Achary, A. K. Tyagi, P. K. Manna, and S. M. Yusuf, “Colloidal Fe-doped ZnO nanocrystals: facile low temperature synthesis, characterization and properties,” Materials Science and Engineering B, vol. 153, no. 1–3, pp. 47–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. R. Estrellan, C. Salim, and H. Hinode, “Photocatalytic activity of sol-gel derived TiO2 co-doped with iron and niobium,” Reaction Kinetics and Catalysis Letters, vol. 98, no. 1, pp. 187–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Schneider, “Magnetic core/shell and quantum-confined semiconductor nanoparticles via chimie douce organometallic synthesis,” Advanced Materials, vol. 13, no. 7, pp. 529–533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. H. B. Lee, Y. M. Yoo, and Y. H. Han, “Characteristic optical properties and synthesis of gold-silica core-shell colloids,” Scripta Materialia, vol. 55, no. 12, pp. 1127–1129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Mohamed and E. S. Aazam, “Photocatalytic oxidation of carbon monoxide over NiO/SnO2 nanocomposites under UV irradiation,” Journal of Nanotechnology, vol. 2012, Article ID 794874, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. A. A. Ismail, I. A. Ibrahim, and R. M. Mohamed, “Sol-gel synthesis of vanadia-silica for photocatalytic degradation of cyanide,” Applied Catalysis B, vol. 45, no. 2, pp. 161–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Zhang, Z. Liu, B. Han et al., “Preparation of silica and TiO2-SiO2 core-shell nanoparticles in water-in-oil microemulsion using compressed CO2 as reactant and antisolvent,” Journal of Supercritical Fluids, vol. 36, no. 3, pp. 194–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Maurice, T. Georgelin, J. M. Siaugue, and V. Cabuil, “Synthesis and characterization of functionalized core-shell γFe2O3-SiO2 nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 10, pp. 1408–1413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Mohamed, “Characterization and catalytic properties of nano-sized Pt metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods,” Journal of Materials Processing Technology, vol. 209, no. 1, pp. 577–583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. S. Chou and C. C. Chen, “Fabrication and characterization of silver core and porous silica shell nanocomposite particles,” Microporous and Mesoporous Materials, vol. 98, no. 1–3, pp. 208–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Mohamed and I. A. Mkhalid, “Characterization and catalytic properties of nano-sized Ag metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods,” Journal of Alloys and Compounds, vol. 501, no. 2, pp. 301–306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, and P. Praserthdam, “Ag-ZnO catalysts for UV-photodegradation of methylene blue,” Applied Catalysis B, vol. 63, no. 3-4, pp. 305–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. T.-Y. Han, C.-F. Wu, and C.-T. Hsieh, “Hydrothermal synthesis and visible light photocatalysis of metal-doped titania nanoparticles,” Journal of Vacuum Science and Technology B, vol. 25, no. 2, article 430, 6 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Ullah and J. Dutta, “Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles,” Journal of Hazardous Materials, vol. 156, no. 1–3, pp. 194–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Slama, F. Ghribi, A. Houas, C. Barthou, and L. El Mir, International Journal of Nanoelectronics and Materials, vol. 3, p. 133, 2010.
  23. R. M. Mohamed, M. A. Al-Rayyani, E. S. Baeissa, and I. A. Mkhalid, “Nano-sized Fe-metal catalyst on ZnO-SiO2: (photo-assisted deposition and impregnation) Synthesis routes and nanostructure characterization,” Journal of Alloys and Compounds, vol. 509, no. 24, pp. 6824–6828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Ren, B. Yang, M. Wu et al., “Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance,” Journal of Hazardous Materials, vol. 182, no. 1–3, pp. 123–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Lai, M. Meng, and Y. Yu, “One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation,” Applied Catalysis B, vol. 100, no. 3-4, pp. 491–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Barakat, H. Schaeffer, G. Hayes, and S. Ismat-Shah, “Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles,” Applied Catalysis B, vol. 57, no. 1, pp. 23–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Barakat, J. M. Tseng, and C. P. Huang, “Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds,” Applied Catalysis B, vol. 59, no. 1-2, pp. 99–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Abdel Aal, M. A. Barakat, and R. M. Mohamed, “Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol,” Applied Surface Science, vol. 254, no. 15, pp. 4577–4583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Nomura and A. Koyama, “Design of an XAFS beamline at the photon factory: possibilities of bent conical mirrors,” Journal of Synchrotron Radiation, vol. 6, no. 3, pp. 182–184, 1999. View at Google Scholar · View at Scopus
  30. M. A. Barakat, Y. T. Chen, and C. P. Huang, “Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst,” Applied Catalysis B, vol. 53, no. 1, pp. 13–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. Pemberton, “Retention of preservative levels of formaldehyde in desiccated biological products,” Journal of Clinical Microbiology, vol. 2, no. 2, pp. 144–146, 1975. View at Google Scholar · View at Scopus
  32. A. Caballero, F. Villain, H. Dexpert, F. Lepeltier, B. Didillon, and J. Lynch, “In situ EXAFS studies of modifications to supported metallic catalysts under reactive atmospheres,” Catalysis Letters, vol. 20, no. 1-2, pp. 1–13, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. R. J. Davis and Z. Liu, “Titania-silica: a model binary oxide catalyst system,” Chemistry of Materials, vol. 9, no. 11, pp. 2311–2324, 1997. View at Google Scholar · View at Scopus
  34. H. Yoshida, T. Shimizu, C. Murata, and T. Hattori, “Highly dispersed zinc oxide species on silica as active sites for photoepoxidation of propene by molecular oxygen,” Journal of Catalysis, vol. 220, no. 1, pp. 226–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Huang, P. E. J. Rivera-Díaz-Del-Castillo, O. Bouaziz, and S. Van Der Zwaag, “Irreversible thermodynamics modelling of plastic deformation of metals,” Materials Science and Technology, vol. 24, no. 4, pp. 495–500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. G. D. Mihai, V. Meynen, M. Mertens, N. Bilba, P. Cool, and E. F. Vansant, “ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: a comparative physicochemical and photocatalytic study,” Journal of Materials Science, vol. 45, no. 21, pp. 5786–5794, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Anpo and M. Che, “Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis,” Advances in Catalysis, vol. 44, pp. 119–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Lassaletta, A. Fernández, J. P. Espinós, and A. R. González-Elipe, “Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition,” Journal of Physical Chemistry, vol. 99, no. 5, pp. 1484–1490, 1995. View at Google Scholar · View at Scopus
  39. J. F. Rivadulla, M. C. Vergara, M. C. Blanco, M. A. López-Quintela, and J. Rivas, “Optical properties of platinum particles synthesized in microemulsions,” Journal of Physical Chemistry B, vol. 101, no. 44, pp. 8997–9004, 1997. View at Google Scholar · View at Scopus
  40. N. A. M. Barakat, K. D. Woo, M. A. Kanjwal, K. E. Choi, M. S. Khil, and H. Y. Kim, “Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique,” Langmuir, vol. 24, no. 20, pp. 11982–11987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Zhang, “Visible light-induced photocatalysis through surface plasmon excitation of platinum-metallized titania for photocatalytic bleaching of rhodamine B,” Monatshefte für Chemie, vol. 143, no. 5, pp. 729–738, 2012. View at Publisher · View at Google Scholar · View at Scopus