Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 120214, 16 pages
http://dx.doi.org/10.1155/2012/120214
Research Article

A Comprehensive Review and Analysis of Solar Photovoltaic Array Configurations under Partial Shaded Conditions

Department of EEE, SSN College of Engineering, Kalavakkam-603 110, Chennai, India

Received 12 August 2011; Revised 17 November 2011; Accepted 19 November 2011

Academic Editor: Songyuan Dai

Copyright © 2012 R. Ramaprabha and B. L. Mathur. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Quaschning and R. Hanitsch, “Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells,” Solar Energy, vol. 56, no. 6, pp. 513–520, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. J. H. R. Enslin, M. S. Wolf, D. B. Snyman, and W. Swiegers, “Integrated photovoltaic maximum power point tracking converter,” IEEE Transactions on Industrial Electronics, vol. 44, no. 6, pp. 769–773, 1997. View at Google Scholar · View at Scopus
  3. W. Herrmann, W. Wiesner, and W. Vaassen, “Hot spot investigations on PV modules - new concepts for a test standard and consequences for module design with respect to bypass diodes,” in Proceedings of the 26th IEEE Photovoltaic Specialists Conference, pp. 1129–1132, October 1997. View at Scopus
  4. N. D. Kaushika and N. K. Gautam, “Energy yield simulations of interconnected solar PV arrays,” IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 127–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Klenk, S. Keller, L. Weber et al., “Investigation of the hot-spot behaviour and formation in crystalline silicon Power cells, PV in Europe, From PV technology to energy solutions,” in Proceedings of the International Conference, pp. 272–275, 2002.
  6. A. Woyte, J. Nijs, and R. Belmans, “Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results,” Solar Energy, vol. 74, no. 3, pp. 217–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. H. S. Rauschenbach, “Electrical output of shadowed solar arrays,” IEEE Transactions on Electron Devices, vol. 18, no. 8, pp. 483–490, 1971. View at Google Scholar
  8. M. C. Alonso-García, J. M. Ruiz, and W. Herrmann, “Computer simulation of shading effects in photovoltaic arrays,” Renewable Energy, vol. 31, no. 12, pp. 1986–1993, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Alonso-García, J. M. Ruiz, and F. Chenlo, “Experimental study of mismatch and shading effects in the I-V characteristic of a photovoltaic module,” Solar Energy Materials and Solar Cells, vol. 90, no. 3, pp. 329–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Karatepe, M. Boztepe, and M. Colak, “Development of suitable model for characterizing photovoltaic arrays with shaded solar cells,” Solar Energy, pp. 329–340, 2007. View at Google Scholar
  11. R. Ramaprabha and B. L. Mathur, “Effect of shading on series and parallel connected solar PV modules,” Journal of Modern Applied Science, vol. 3, no. 10, pp. 32–41, 2009. View at Google Scholar
  12. W. Xiao, N. Ozog, and W. G. Dunford, “Topology study of photovoltaic interface for maximum power point tracking,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1696–1704, 2007. View at Google Scholar
  13. T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 217–223, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Román, R. Alonso, P. Ibañez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV module for grid-connected PV systems,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1066–1073, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, “Distributed maximum power point tracking of photovoltaic arrays: novel approach and system analysis,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2610–2621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, “Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1548–1556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Gules, J. D. P. Pacheco, H. L. Hey, and J. Imhoff, “A maximum power point tracking system with parallel connection for PV stand-alone applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2674–2683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Gonzalez and R. Weaver, “Circuit design considerations for photovoltaic modules and systems,” in Proceedings of the 14th IEEE Photovoltaic Specialist Conference, pp. 528–535, January 1980. View at Scopus
  19. N. F. Shepard and R. S. Sugimura, “The integration of bypass diode with terrestrial photovoltaic modules and arrays,” in Proceedings of the 17th IEEE Photovoltaic Specialist Conference, pp. 676–681, 1984. View at Scopus
  20. F. Giraud and Z. Salameh, “Analysis of the effects of a passing cloud on a grid-interactive photovoltaic system with battery storage using neural networks,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 1572–1577, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. J. Wang and P. C. Hsu, “Analysis of partially shaded PV modules using piecewise linear parallel branches model,” World Academy of Science, Engineering and Technology, vol. 60, pp. 783–789, 2009. View at Google Scholar
  22. Y. J. Wang and P. C. Hsu, “An investigation on partial shading of PV modules with different connection configurations of PV cells,” International Journal on Energy, vol. 36, no. 5, pp. 3069–3078, 2011. View at Google Scholar
  23. M. G. Jaboori, M. M. Saied, and A. R. Hanafy, “A contribution to the simulation and design optimization of photovoltaic systems,” IEEE Transactions on Energy Conversion, vol. 6, no. 3, pp. 401–406, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. W. T. Jewell and T. D. Unruh, “Limits on cloud-induced fluctuation in photovoltaic generation,” IEEE Transactions on Energy Conversion, vol. 5, no. 1, pp. 8–14, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Patel and V. Agarwal, “MATLAB-based modeling to study the effects of partial shading on PV array characteristics,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 302–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Patel and V. Agarwal, “Maximum power point tracking scheme for PV systems operating under partially shaded conditions,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1689–1698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. S. Swaleh and M. A. Green, “Effect of shunt resistance and bypass diodes on the shadow tolerance of solar cell modules,” Solar Cells, vol. 5, no. 2, pp. 183–198, 1982. View at Google Scholar · View at Scopus
  28. M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1198–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Silvestre, A. Boronat, and A. Chouder, “Study of bypass diodes configuration on PV modules,” Applied Energy, vol. 86, no. 9, pp. 1632–1640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Ramaprabha and B. L. Mathur, “Modelling and simulation of solar PV array under partial shaded conditions,” in Proceedings of the IEEE-International Conference on Sustainable Energy Technologies (ICSET '08), pp. 7–11, SMU Conference Centre, Singapore, November 2008.
  31. J. W. Bishop, “Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits,” Solar Cells, vol. 25, no. 1, pp. 73–89, 1988. View at Google Scholar · View at Scopus
  32. M. C. Alonso-García and J. M. Ruíz, “Analysis and modelling the reverse characteristic of photovoltaic cells,” Solar Energy Materials and Solar Cells, vol. 90, no. 7-8, pp. 1105–1120, 2006. View at Publisher · View at Google Scholar · View at Scopus