Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 175610, 7 pages
http://dx.doi.org/10.1155/2012/175610
Research Article

Exploring Spray-Coating Techniques for Organic Solar Cell Applications

1Center for Nanotechnology and Molecular Materials, Wake Forest University, 501 Deacon Boulevard, Winston-Salem, NC 27105, USA
2Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA

Received 5 December 2011; Revised 5 March 2012; Accepted 7 March 2012

Academic Editor: Peter Rupnowski

Copyright © 2012 Wanyi Nie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We have investigated spray coating as a novel processing method for organic solar cell fabrication. In this work, spraying parameters and organic solvent influences have been correlated with cell performance. Using airbrush fabrication, bulk heterojunction photovoltaic devices based on a new low band gap donor material: poly[(4,8-bis(1-pentylhexyloxy)benzo[1,2-b:4,5-b]dithiophene-2,6-diyl-alt-2,1,3-benzoxadiazole-4,7-diyl] with the C60-derivative (6,6)-phenyl C61-butyric acid methyl ester (PCBM) as an acceptor, have achieved power conversion efficiencies over 3%. We show that airbrush fabrication can be carried out with simple solvents such as pristine 1,2-dichlorobenzene. Moreover, the influence of device active area has been studied and the 1 cm2 device by spray coating maintained an excellent power conversion efficiency of 3.02% on average.