Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 186752, 5 pages
http://dx.doi.org/10.1155/2012/186752
Research Article

LED Light-Activated Hypocrellin B Induces Mitochondrial Damage of Ovarian Cancer Cells

1Department of Photodynamic and Sonodynamic Therapy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
2School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong

Received 22 December 2011; Revised 1 May 2012; Accepted 7 May 2012

Academic Editor: Timon Cheng-Yi Liu

Copyright © 2012 Yuan Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Y. Han, E. Kipps, and S. B. Kaye, “Current treatment and clinical trials in ovarian cancer,” Expert Opinion on Investigational Drugs, vol. 19, no. 4, pp. 521–534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Hu, C. McArthur, and R. B. Jaffe, “Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant,” British Journal of Cancer, vol. 102, no. 8, pp. 1276–1283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. J. Dougherty, C. J. Gomer, B. W. Henderson et al., “Photodynamic therapy,” Journal of the National Cancer Institute, vol. 90, no. 12, pp. 889–905, 1998. View at Google Scholar · View at Scopus
  4. S. Pachydaki, L. Sobrin, and J. W. Miller, “Photodynamic therapy and combination treatments,” International Ophthalmology Clinics, vol. 47, no. 1, pp. 95–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. Hudson, J. Zhou, J. Chen, L. Harris, L. Yip, and G. H. Towers, “Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus,” Photochemistry and Photobiology, vol. 60, no. 3, pp. 253–255, 1994. View at Google Scholar · View at Scopus
  6. D. Zhenjun and J. W. Lown, “Hypocrellins and their use in photosensitization,” Photochemistry and Photobiology, vol. 52, no. 3, pp. 609–616, 1990. View at Google Scholar · View at Scopus
  7. E. P. Estey, K. Brown, Z. Diwu et al., “Hypocrellins as photosensitizers for photodynamic therapy: a screening evaluation and pharmacokinetic study,” Cancer Chemotherapy and Pharmacology, vol. 37, no. 4, pp. 343–350, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. J. Diwu, R. P. Haugland, J. Liu et al., “Photosensitization by anticancer agents 21: new perylene- and aminonaphthoquinones,” Free Radical Biology and Medicine, vol. 20, no. 4, pp. 589–593, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Jiang, A. W. N. Leung, J. Y. Xiang, and C. S. Xu, “Blue light-activated hypocrellin B damages ovarian cancer cells,” Laser Physics, vol. 22, no. 1, pp. 300–305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Ali, S. K. Chee, G. Y. Yuen, and M. Olivo, “Hypericin and hypocrellin induced apoptosis in human mucosal carcinoma cells,” Journal of Photochemistry and Photobiology B, vol. 65, no. 1, pp. 59–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Wang, C. S. Xu, J. Xu, X. Wang, and A. W. Leung, “Hypocrellin B enhances ultrasound-induced cell death of nasopharyngeal carcinoma cells,” Ultrasound in Medicine and Biology, vol. 36, no. 2, pp. 336–342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Chalah and R. Khosravi-Far, “The mitochondrial death pathway,” Advances in Experimental Medicine and Biology, vol. 615, pp. 25–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. J. Smith, H. Ng, R. M. Kluck, and P. Nagley, “The mitochondrial gateway to cell death,” IUBMB Life, vol. 60, no. 6, pp. 383–389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Y. Shen, J. Shen, Q. S. Li, C. Y. Chen, J. Y. Chen, and Y. Zeng, “Morphological and functional changes of mitochondria in apoptotic esophageal carcinoma cells induced by arsenic trioxide,” World Journal of Gastroenterology, vol. 8, no. 1, pp. 31–35, 2002. View at Google Scholar · View at Scopus
  15. H. C. Lee, P. H. Yin, C. Y. Lu, C. W. Chi, and Y. H. Wei, “Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells,” Biochemical Journal, vol. 348, no. 2, pp. 425–432, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Wang, C. M. Che, J. F. Chiu, and Q. Y. He, “Dioscin (saponin)-induced generation of reactive oxygen species through mitochondria dysfunction: a proteomic-based study,” Journal of Proteome Research, vol. 6, no. 12, pp. 4703–4710, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Wang, C. Xu, X. Xia et al., “Mitochondrial damage in nasopharyngeal carcinoma cells induced by ultrasound radiation in the presence of hypocrellin B,” Journal of Ultrasound in Medicine, vol. 29, no. 1, pp. 43–50, 2010. View at Google Scholar · View at Scopus
  18. S. A. Susin, H. K. Lorenzo, N. Zamzami et al., “Molecular characterization of mitochodrial apoptosis-inducing factor,” Nature, vol. 397, no. 6718, pp. 441–446, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Morgan and A. R. Oseroff, “Mitochondria-based photodynamic anti-cancer therapy,” Advanced Drug Delivery Reviews, vol. 49, no. 1-2, pp. 71–86, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Xu, X. Xia, X. Wang et al., “Sonodynamic action of pyropheophorbide-a methyl ester in liver cancer cells,” Journal of Ultrasound in Medicine, vol. 29, no. 7, pp. 1031–1037, 2010. View at Google Scholar · View at Scopus
  21. S. M. Ali and M. Olivo, “Efficacy of hypocrellin pharmacokinetics in phototherapy,” International journal of oncology, vol. 21, no. 6, pp. 1229–1237, 2002. View at Google Scholar · View at Scopus
  22. M. J. Sousa, F. Azevedo, A. Pedras et al., “Vacuole-mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome-mitochondria-mediated apoptosis in mammals,” Biochemical Society Transactions, vol. 39, no. 5, pp. 1533–1537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Ali-Seyed, R. Bhuvaneswari, K. C. Soo, and M. Olivo, “Photolon—photosensitization induces apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes,” International Journal of Oncology, vol. 39, no. 4, pp. 821–831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Liu, Z. Zhang, and D. Xing, “Cell death via mitochondrial apoptotic pathway due to activation of Bax by lysosomal photodamage,” Free Radical Biology and Medicine, vol. 51, no. 1, pp. 53–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Yang, S. Wang, L. Zhong et al., “6-Gingerol induces apoptosis through lysosomal-mitochondrial axis in human hepatoma G2 cells,” Phytotherapy Research. In press. View at Publisher · View at Google Scholar · View at Scopus