Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 197514, 7 pages
http://dx.doi.org/10.1155/2012/197514
Research Article

High-Efficiency 6′′ Multicrystalline Black Solar Cells Based on Metal-Nanoparticle-Assisted Chemical Etching

1Institute of Nanoengineering and Microsystems, National Tsing-Hua University, Hsinchu 30013, Taiwan
2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Sino-American Silicon Products Inc., Hsinchu 30077, Taiwan

Received 31 August 2011; Accepted 30 December 2011

Academic Editor: Junsin Yi

Copyright © 2012 W. Chuck Hsu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. http://www.solarbuzz.com/node/56.
  2. A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R-Reports, vol. 40, no. 1, pp. 1–46, 2003. View at Google Scholar · View at Scopus
  3. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Applied Physics Letters, vol. 93, no. 25, Article ID 251108, 3 pages, 2008. View at Google Scholar
  4. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Journal of Applied Physics, vol. 62, no. 1, pp. 243–249, 1987. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Solar Energy Materials and Solar Cells, vol. 90, no. 16, pp. 2647–2656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Premoli and M. L. Rastello, “Minimax refining of wideband antireflection coatings for wide angular incidence,” Applied Optics, vol. 33, no. 10, pp. 2018–2024, 1994. View at Google Scholar · View at Scopus
  7. M. Lipinski, A. Kaminski, J. F. Lelievre, M. Lemiti, E. Fourmond, and P. Zieba, “Investigation of graded index SiOxNy antireflection coating for silicon solar cell manufacturing,” Physica Status Solidi C, vol. 4, no. 4, pp. 1566–1569, 2007. View at Publisher · View at Google Scholar
  8. H. Nagel, A. G. Aberle, and R. Hezel, “Optimized antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Progress in Photovoltaics, vol. 7, no. 4, pp. 245–260, 1999. View at Google Scholar · View at Scopus
  9. K. A. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small, vol. 1, no. 11, pp. 1062–1067, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Fang, Y. Wu, J. H. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology, vol. 17, no. 15, pp. 3768–3774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Fang, X. D. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications,” Nanotechnology, vol. 19, no. 25, Article ID 255703, 7 pages, 2008. View at Google Scholar
  12. J. Y. Chyan, W. C. Hsu, and J. A. Yeh, “Broadband antireflective poly-Si nanosponge for thin film solar cells,” Optics Express, vol. 17, no. 6, pp. 4646–4651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C.-N. Chen, C.-T. Huang, C.-L. Chao, M. T.-K. Hou, W.-C. Hsu, and J. A. Yeh, “Strengthening for sc-si solar cells by surface modification with nanowires,” Journal of Microelectromechanical Systems, vol. 20, no. 3, pp. 549–551, 2011. View at Publisher · View at Google Scholar
  14. W. C. Hsu, J. Y. Chyan, Y.-S. Lu, and J. A. Yeh, “Electroluminescence of out-of-plane silicon nanowire/silver oxide/silver nanodendrite heterostructures,” Optical Materials Express, vol. 1, no. 7, pp. 1210–1215, 2011. View at Google Scholar
  15. H. D. Um, J. Y. Jung, H. S. Seo et al., “Silicon nanowire array solar cell prepared by metal-induced electroless etching with a novel processing technology,” Japanese Journal of Applied Physics, vol. 49, no. 4, Article ID 04DN02, 5 pages, 2010. View at Google Scholar
  16. D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Solar Energy Materials and Solar Cells, vol. 95, no. 1, pp. 215–218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. F. Huang, S. Chattopadhyay, Y. J. Jen et al., “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology, vol. 2, no. 12, pp. 770–774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Applied Physics Letters, vol. 92, no. 6, Article ID 061112, 3 pages, 2008. View at Google Scholar
  19. M. A. Tsai, P. C. Tseng, H. C. Chen, H. C. Kuo, and P. C. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Optics Express, vol. 19, no. 1, pp. A28–A34, 2011. View at Google Scholar
  20. C. C. Striemer and P. M. Fauchet, “Dynamic etching of silicon for solar cell applications,” Physica Status Solidi A, vol. 197, no. 2, pp. 502–506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Optics Letters, vol. 24, no. 20, pp. 1422–1424, 1999. View at Google Scholar · View at Scopus
  22. H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Applied Physics Letters, vol. 95, no. 12, Article ID 123501, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus