Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 206174, 5 pages
Research Article

Characteristics of GaN/InGaN Double-Heterostructure Photovoltaic Cells

1Institute of Microelectronics and Department of Electrical Engineering, Advanced Optoelectronic Technology Center, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan
2Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan
3Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 310, Taiwan
4Department of Electronic Engineering, Chang-Gung University, Taoyuan 333, Taiwan

Received 29 March 2012; Revised 18 June 2012; Accepted 26 June 2012

Academic Editor: Wayne A. Anderson

Copyright © 2012 Ming-Hsien Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Saguatti, L. Bidinelli, G. Verzellesi et al., “Investigation of efficiency-droop mechanisms in multi-quantum-well InGaN/GaN blue light-emitting diodes,” IEEE Transactions on Electron Devices, vol. 59, pp. 1402–1409, 2012. View at Google Scholar
  2. C. Y. Huang, M. T. Hrdy, K. Fujito et al., “Demonstration of 505 nm laser diodes using wavelength-stable semipolar (20(21)over-bar)InGaN/GaN quantum wells,” Applied Physics Letters, vol. 99, Article ID 241115, 3 pages, 2011. View at Google Scholar
  3. S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, and F. H. Julien, “Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1. 7 μm,” Applied Physics Letters, vol. 100, Article ID 181103, 3 pages, 2012. View at Google Scholar
  4. J. Wu, W. Walukiewicz, K. M. Yu et al., “Small band gap bowing in In1xGaxN alloys,” Applied Physics Letters, vol. 80, no. 25, pp. 4741–4743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaNInGaN solar cells,” Applied Physics Letters, vol. 91, no. 13, Article ID 132117, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Zheng, R. H. Horng, D. S. Wuu et al., “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Applied Physics Letters, vol. 93, no. 26, Article ID 261108, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. F. Muth, J. H. Lee, I. K. Shmagin et al., “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Applied Physics Letters, vol. 71, no. 18, pp. 2572–2574, 1997. View at Google Scholar · View at Scopus
  8. S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, 1981.
  9. X. Quo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” Journal of Applied Physics, vol. 90, no. 8, pp. 4191–4195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Barnett, D. Kirkpatrick, C. Honsberg et al., “Milestones toward 50% efficient solar cell modules,” in Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, September 2007.