Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 314361, 8 pages
http://dx.doi.org/10.1155/2012/314361
Research Article

Photocatalytic Oxidation of Gaseous Isopropanol Using Visible-Light Active Silver Vanadates/SBA-15 Composite

1Department of Environmental Engineering, Kun Shan University, Tainan 71003, Taiwan
2Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
3Department of Materials Engineering, Kun Shan University, No. 949 Da-Wan Road, Yong-Kang District, Tainan 71003, Taiwan

Received 1 July 2011; Revised 2 October 2011; Accepted 3 October 2011

Academic Editor: Jae Sung Lee

Copyright © 2012 Ting-Chung Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kim, H.-R. Kim, and S.-J. Choung, “The characterization and hydrogen production from water decomposition with methanol in a semi-batch type reactor using In, P-TiO2s,” International Journal of Photoenergy, vol. 2011, Article ID 359161, 7 pages, 2011. View at Publisher · View at Google Scholar
  2. J. A. Byrne, P. A. Fernandez-Ibañez, P. S. M. Dunlop, D. M. A. Alrousan, and J. W. J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, Article ID 798051, 12 pages, 2011. View at Publisher · View at Google Scholar
  3. Y. Sasaki, A. Iwase, H. Kato, and A. Kudo, “The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation,” Journal of Catalysis, vol. 259, no. 1, pp. 133–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Huang, L. C. Chen, K. W. Cheng, and G. T. Pan, “Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation,” Journal of Molecular Catalysis A, vol. 261, no. 2, pp. 218–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Cui, F. Huang, M. Niu, L. Zeng, J. Xu, and Y. Wang, “A visible light active photocatalyst: nano-composite with Fe-doped anatase TiO2 nanoparticles coupling with TiO2(B) nanobelts,” Journal of Molecular Catalysis A, vol. 326, no. 1-2, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, and G. L. Puma, “Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation,” Journal of Molecular Catalysis A, vol. 327, no. 1-2, pp. 51–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Y. Zhao, J. L. Feng, Q. S. Huo et al., “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science, vol. 279, no. 5350, pp. 548–552, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Inumaru, T. Kasahara, M. Yasui, and S. Yamanaka, “Direct nanocomposite of crystalline TiO2 particles and mesoporous silica as a molecular selective and highly active photocatalyst,” Chemical Communications, no. 16, pp. 2131–2133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Yang, J. Zhang, L. Zhu et al., “Synthesis of nano titania particles embedded in mesoporous SBA-15: characterization and photocatalytic activity,” Journal of Hazardous Materials, vol. 137, no. 2, pp. 952–958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Tasbihi, U. L. Štangar, U. Černigoj, J. Jirkovsky, S. Bakardjieva, and N. Novak Tušar, “Photocatalytic oxidation of gaseous toluene on titania/mesoporous silica powders in a fluidized-bed reactor,” Catalysis Today, vol. 161, no. 1, pp. 181–188, 2011. View at Publisher · View at Google Scholar
  11. X. Li, S. Ouyang, N. Kikugawa, and J. Ye, “Novel Ag2ZnGeO4 photocatalyst for dye degradation under visible light irradiation,” Applied Catalysis A, vol. 334, no. 1-2, pp. 51–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. C. Chen, G. T. Pan, T. C. K. Yang, T. W. Chung, and C. M. Huang, “In situ DRIFT and kinetic studies of photocatalytic degradation on benzene vapor with visible-light-driven silver vanadates,” Journal of Hazardous Materials, vol. 178, no. 1–3, pp. 644–651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Huang, G. T. Pan, P. Y. Peng, and T. C. K. Yang, “In situ DRIFT study of photocatalytic degradation of gaseous isopropanol over BiVO4 under indoor illumination,” Journal of Molecular Catalysis A, vol. 327, no. 1-2, pp. 38–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Sun, J. Han, Y. Ding et al., “One-pot synthesized mesoporous Ca/SBA-15 solid base for transesterification of sunflower oil with methanol,” Applied Catalysis A, vol. 390, no. 1-2, pp. 26–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Carriazo, C. Martín, and V. Rives, “An FT-IR study of the adsorption of isopropanol on calcined layered double hydroxides containing isopolymolybdate,” Catalysis Today, vol. 126, no. 1-2, pp. 153–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Lewandowski and D. F. Ollis, “A Two-Site kinetic model simulating apparent deactivation during photocatalytic oxidation of aromatics on titanium dioxide (TiO2),” Applied Catalysis B, vol. 43, no. 4, pp. 309–327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Konta, H. Kato, H. Kobayashi, and A. Kudo, “Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates,” Physical Chemistry Chemical Physics, vol. 5, no. 14, pp. 3061–3065, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Chen, Y. Huang, J. Xiu, X. Han, and X. Bao, “Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves,” Applied Catalysis A, vol. 273, no. 1-2, pp. 185–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Hoshikawa, T. Ikebe, M. Yamada, R. Kikuchi, and K. Eguchi, “Preparation of silica-modified TiO2 and application to dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 184, no. 1-2, pp. 78–85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Mo, Y. Zhang, Q. Xu, and R. Yang, “Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 276–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Ramis, L. Yi, and G. Busca, “Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study,” Catalysis Today, vol. 28, no. 4, pp. 373–380, 1996. View at Google Scholar · View at Scopus
  22. M. A. Centeno, I. Carrizosa, and J. A. Odriozola, “In situ DRIFTS study of the SCR reaction of NO with NH3 in the presence of O2 over lanthanide doped V2O5/Al2O3 catalysts,” Applied Catalysis B, vol. 19, no. 1, pp. 67–73, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. L. C. Chen, G. T. Pan, T. C. K. Yang, T. W. Chung, and C. M. Huang, “In situ DRIFT and kinetic studies of photocatalytic degradation on benzene vapor with visible-light-driven silver vanadates,” Journal of Hazardous Materials, vol. 178, no. 1–3, pp. 644–651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. R. Sohn and W. C. Park, “The roles of active sites of nickel sulfate supported on γ-Al2O3 for ethylene dimerization,” Applied Catalysis A, vol. 239, no. 1-2, pp. 269–278, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. R. Sohn and S. H. Lee, “Acidic properties of nickel sulfate supported on TiO2-ZrO2 and catalytic activity for acid catalysis,” Applied Catalysis A, vol. 266, no. 1, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. R. Sohn and J. S. Han, “Preparation and characterization of NiO/CeO2-ZrO2/WO3 catalyst for acid catalysis,” Journal of Industrial and Engineering Chemistry, vol. 11, no. 3, pp. 439–448, 2005. View at Google Scholar · View at Scopus