Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 329796, 10 pages
Research Article

The Synthesis of Anatase Nanoparticles and the Preparation of Photocatalytically Active Coatings Based on Wet Chemical Methods for Self-Cleaning Applications

1Cinkarna Celje, d.d., Kidriceva 26, 3001 Celje, Slovenia
2Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5001 Nova Gorica, Slovenia
3Department for Nanostructured Materials, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Received 27 January 2012; Revised 28 March 2012; Accepted 28 March 2012

Academic Editor: Stéphane Jobic

Copyright © 2012 Dejan Verhovšek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We report on an improved sol-gel method for the production of highly photocatalytic titanium dioxide (TiO2) anatase nanoparticles which can provide appropriate control over the final characteristics of the nanoparticles, such as particle size, crystallinity, crystal structure, morphology, and also the degree of agglomeration. The synthesized anatase nanoparticles were characterized using various techniques, such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and were tested in coatings for self-cleaning glass and ceramic surfaces. The coatings were prepared using a soft chemistry route and are completely transparent to visible light and exhibit a high photocatalytic effect, which was determined by contact-angle measurements. Finally, it is worth mentioning that both the sol-gel synthesis method and the coating-preparation method are based on a wet chemical process, thus presenting no risk of handling the TiO2 anatase nanoparticles in their potentially hazardous powder form at any stage of our development. Low-price, easy-to-handle, and nontoxic materials were used. Therefore, our work represents an important contribution to the development of TiO2 anatase nanoparticle coatings that provide a high photocatalytic effect and can thus be used for numerous applications.