Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 354032, 8 pages
http://dx.doi.org/10.1155/2012/354032
Research Article

Synergistic Effect of Nanophotocatalysis and Nonthermal Plasma on the Removal of Indoor HCHO

1Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, China
2Research Institute Guodian United Power Technology Co, Ltd, Beijing 100039, China
3School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Received 28 October 2011; Revised 20 December 2011; Accepted 20 December 2011

Academic Editor: Jiaguo Yu

Copyright © 2012 Yuanwei Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Photocatalysis is an effective method of air purification at the condition of a higher pollutant concentration. However, its wide application in indoor air cleaning is limited due to the low level of indoor air contaminants. Immobilizing the nanosized TiO2 particles on the surface of activated carbon filter (TiO2/AC film) could increase the photocatalytic reaction rate as a local high pollutant concentration can be formed on the surface of TiO2 by the adsorption of AC. However, the pollutant removal still decreased quickly with the increase in flow velocity, which results in a decrease in air treatment capacity. In order to improve the air treatment capacity by the photocatalytic oxidation (PCO) method, this paper used formaldehyde (HCHO) as a contaminant to study the effect of combination of PCO with nonthermal plasma technology (NTP) on the removal of HCHO. The experimental results show that HCHO removal is more effective with line-to-plate electrode discharge reactor; the HCHO removal and the reaction rate can be enhanced and the amount of air that needs to be cleaned can be improved. Meanwhile, the results show that there is the synergistic effect on the indoor air purification by the combination of PCO with NTP.