Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 391958, 9 pages
http://dx.doi.org/10.1155/2012/391958
Research Article

One-Step Cohydrothermal Synthesis of Nitrogen-Doped Titanium Oxide Nanotubes with Enhanced Visible Light Photocatalytic Activity

1Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
2Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Science, Kaohsiung 80778, Taiwan

Received 15 July 2011; Revised 7 September 2011; Accepted 8 September 2011

Academic Editor: Jae Sung Lee

Copyright © 2012 Cheng-Ching Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. H. Kisch, S. Sakthivel, M. Janczarek, and D. Mitoraj, “A Low-Band gap, nitrogen-modified titania visible-light photocatalyst,” Journal of Physical Chemistry C, vol. 111, no. 30, pp. 11445–11449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Yu, J. Yu, W. Ho, Z. Jiang, and L. Zhang, “Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders,” Chemistry of Materials, vol. 14, no. 9, pp. 3808–3816, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Lukáč, M. Klementová, P. Bezdička et al., “Characterization of Zr-doped TiO2 prepared by homogenous co-precipitation without high-temperature treatment,” Journal of Materials Science, vol. 42, no. 22, pp. 9421–9428, 2007. View at Publisher · View at Google Scholar
  6. W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” Journal of Physical Chemistry, vol. 98, no. 51, pp. 13669–13679, 1994. View at Google Scholar · View at Scopus
  7. M. Zhou, J. Yu, and B. Cheng, “Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method,” Journal of Hazardous Materials, vol. 137, no. 3, pp. 1838–1847, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. A. Henderson, J. M. White, H. Uetsuka, and H. Onishi, “Photochemical charge transfer and trapping at the interface between an organic adlayer and an oxide semiconductor,” Journal of the American Chemical Society, vol. 125, no. 49, pp. 14974–14975, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. Y. Lee, J. Park, and J. H. Cho, “Electronic properties of N-and C-doped TiO2,” Applied Physics Letters, vol. 87, no. 1, Article ID 011904, 2005. View at Google Scholar
  10. D. Chen, D. Yang, Q. Wang, and Z. Jiang, “Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles,” Industrial and Engineering Chemistry Research, vol. 45, no. 12, pp. 4110–4116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Ohno, T. Mitsui, and M. Matsumura, “Photocatalytic activity of S-doped TiO2 photocatalyst under visible light,” Chemistry Letters, vol. 32, no. 4, pp. 364–365, 2003. View at Google Scholar · View at Scopus
  12. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Titania nanotubes prepared by chemical processing,” Advanced Materials, vol. 11, no. 15, pp. 1307–1311, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Formation of titanium oxide nanotube,” Langmuir, vol. 14, no. 12, pp. 3160–3163, 1998. View at Google Scholar · View at Scopus
  14. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, and N. Wang, “Formation mechanism of TiO2 nanotubes,” Applied Physics Letters, vol. 82, no. 2, pp. 281–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. V. Bavykin, S. N. Gordeev, A. V. Moskalenko, A. A. Lapkin, and F. C. Walsh, “Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence,” Journal of Physical Chemistry B, vol. 109, no. 18, pp. 8565–8569, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells,” Journal of Physics D, vol. 39, no. 12, pp. 2498–2503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Yin, K. Ihara, M. Komatsu et al., “Low temperature synthesis of TiO2-xNy powders and films with visible light responsive photocatalytic activity,” Solid State Communications, vol. 137, no. 3, pp. 132–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. R. Torres, T. Lindgren, J. Lu, C. G. Granqvist, and S. E. Lindquist, “Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation,” Journal of Physical Chemistry B, vol. 108, no. 19, pp. 5995–6003, 2004. View at Google Scholar · View at Scopus
  19. P. G. Wu, C. H. Ma, and J. K. Shang, “Effects of nitrogen doping on optical properties of TiO2 thin films,” Applied Physics A, vol. 81, no. 7, pp. 1411–1417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Fabreguette, L. Imhoff, M. Maglione et al., “Correlation between the electrical properties and morphology of low-pressure MOCVD titanium oxynitride thin films grown at various temperatures,” Chemical Vapor Deposition, vol. 6, no. 3, pp. 109–114, 2000. View at Google Scholar · View at Scopus
  21. J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale,” Journal of Physical Chemistry B, vol. 108, no. 4, pp. 1230–1240, 2004. View at Google Scholar · View at Scopus
  22. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, “Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations,” Journal of Physical Chemistry B, vol. 109, no. 23, pp. 11414–11419, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. Ghicov, J. M. Macak, H. Tsuchiya et al., “Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes,” Nano Letters, vol. 6, no. 5, pp. 1080–1082, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Ghicov, J. M. Macak, H. Tsuchiya et al., “TiO2 nanotube layers: dose effects during nitrogen doping by ion implantation,” Chemical Physics Letters, vol. 419, no. 4–6, pp. 426–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Chen, W. Zhou, G. H. Du, and L. M. Peng, “Trititanate nanotubes made via a single alkali treatment,” Advanced Materials, vol. 14, no. 17, pp. 1208–1211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Lan, X. Gao, H. Zhu et al., “Titanate nanotubes and nanorods prepared from rutile powder,” Advanced Functional Materials, vol. 15, no. 8, pp. 1310–1318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Yoshida, Y. Suzuki, and S. Yoshikawa, “Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes,” Materials Chemistry and Physics, vol. 91, no. 2-3, pp. 409–416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Ma, Y. Bando, and T. Sasaki, “Nanotubes of lepidocrocite titanates,” Chemical Physics Letters, vol. 380, no. 5–6, pp. 577–582, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Q. Weng, S. H. Song, S. Hodgson, A. Baker, and J. Yu, “Synthesis and characterisation of nanotubular titanates and titania,” Journal of the European Ceramic Society, vol. 26, no. 8, pp. 1405–1409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Yu, H. Yu, B. Cheng, X. Zhao, and Q. Zhang, “Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method,” Journal of Photochemistry and Photobiology A, vol. 182, no. 2, pp. 121–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Peng, L. Cai, H. Yu, H. Wang, and J. Yang, “Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity,” Journal of Solid State Chemistry, vol. 181, no. 1, pp. 130–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol et al., “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure and Applied Chemistry, vol. 57, no. 4, pp. 603–619, 1985. View at Google Scholar
  33. R. Nakamura, T. Tanaka, and Y. Nakato, “Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes,” Journal of Physical Chemistry B, vol. 108, no. 30, pp. 10617–10620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Sathish, B. Viswanathan, R. P. Viswanath, and C. S. Gopinath, “Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst,” Chemistry of Materials, vol. 17, no. 25, pp. 6349–6353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Sakthivel, M. Janczarek, and H. Kisch, “Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2,” Journal of Physical Chemistry B, vol. 108, no. 50, pp. 19384–19387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Chen and C. Burda, “Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles,” Journal of Physical Chemistry B, vol. 108, no. 40, pp. 15446–15449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: an x-ray photoelectron spectroscopy study,” Journal of Applied Physics, vol. 72, no. 7, pp. 3072–3079, 1992. View at Publisher · View at Google Scholar · View at Scopus
  38. W. H. R. Shaw and J. J. Bordeaux, “The decomposition of urea in aqueous media,” Journal of the American Chemical Society, vol. 77, no. 18, pp. 4729–4733, 1955. View at Google Scholar · View at Scopus
  39. Y. Cong, J. Zhang, F. Chen, and M. Anpo, “Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity,” Journal of Physical Chemistry C, vol. 111, no. 19, pp. 6976–6982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, “Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases,” Journal of Catalysis, vol. 203, no. 1, pp. 82–86, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Yin, J. Wu, M. Aki, and T. Sato, “Photocatalytic hydrogen evolution with fibrous titania prepared by the solvothermal reactions of protonic layered tetratitanate (H2Ti4O9),” International Journal of Inorganic Materials, vol. 2, no. 4, pp. 325–331, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Yin, Y. Aita, M. Komatsu, and T. Sato, “Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system,” Journal of the European Ceramic Society, vol. 26, no. 13, pp. 2735–2742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Li, G. Song, J. Chen, M. Zhu, and P. K. Wong, “Photocatalytic degradation of methylene blue by magnetically separable BiVO4 supported on Fe3O3 nanoparticles,” in Proceedings of the 2nd Conference on Environmental Science and Information Application Technology, pp. 352–355, IEEE, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light,” Journal of Physical Chemistry B, vol. 108, no. 19, pp. 6004–6008, 2004. View at Google Scholar · View at Scopus