Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 528637, 8 pages
http://dx.doi.org/10.1155/2012/528637
Research Article

Effects of Calcination Temperature on Preparation of Boron-Doped TiO2 by Sol-Gel Method

School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China

Received 5 January 2012; Revised 5 February 2012; Accepted 6 February 2012

Academic Editor: Weifeng Yao

Copyright © 2012 Wenjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  2. H. B. Li, G. C. Liu, S. G. Chen, and Q. C. Liu, “Novel Fe doped mesoporous TiO2 microspheres: ultrasonic-hydrothermal synthesis, characterization, and photocatalytic properties,” Physica E, vol. 42, no. 6, pp. 1844–1849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Sasirekha, S. J. S. Basha, and K. Shanthi, “Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide,” Applied Catalysis B, vol. 62, no. 1-2, pp. 169–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. H. Li, S. Ciston, Z. V. Saponjic et al., “Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications,” Journal of Catalysis, vol. 253, no. 1, pp. 105–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Guo, Z. B. Wu, H. Q. Wang, and F. Dong, “Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances,” Catalysis Communications, vol. 10, no. 13, pp. 1766–1770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Shen, W. Zhang, Z. P. Hao, and L. D. Zou, “A study on the synergistic adsorptive and photocatalytic activities of TiO2xNx/Beta composite catalysts under visible light irradiation,” Chemical Engineering Journal, vol. 165, no. 1, pp. 301–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Qiao, S. S. Wu, Q. Chen, and J. Shen, “Novel triethanolamine assisted sol-gel synthesis of N-doped TiO2 hollow spheres,” Materials Letters, vol. 64, no. 12, pp. 1398–1400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Senthilnathan and L. Philip, “Photodegradation of methyl parathion and dichlorvos from drinking water with N-doped TiO2 under solar radiation,” Chemical Engineering Journal, vol. 172, pp. 678–688, 2011. View at Publisher · View at Google Scholar
  10. Y. Li, M. Y. Ma, X. H. Wang, and X. H. Wang, “Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study,” Journal of Environmental Sciences, vol. 20, no. 12, pp. 1527–1533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Tian, J. F. Ma, K. Li, and J. J. Li, “Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange,” Ceramics International, vol. 35, no. 3, pp. 1289–1292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Xu, Y. H. Ao, D. F. Fu, and C. W. Yuan, “Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light,” Applied Surface Science, vol. 254, no. 10, pp. 3033–3038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Y. Lv, L. S. Yu, H. Y. Huang, H. L. Liu, and Y. Y. Feng, “Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photocatalystic properties under the solar light irradiation,” Journal of Alloys and Compounds, vol. 488, no. 1, pp. 314–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Ma, J. W. Fu, X. Tao, X. Li, and J. F. Chen, “Low temperature synthesis of iodine-doped TiO2 nanocrystallites with enhanced visible-induced photocatalytic activity,” Applied Surface Science, vol. 257, no. 11, pp. 5046–5051, 2011. View at Publisher · View at Google Scholar
  15. R. Khan, S. W. Kim, T. J. Kim, and C. M. Nam, “Comparative study of the photocatalytic performance of boron-iron Co-doped and boron-doped TiO2 nanoparticles,” Materials Chemistry and Physics, vol. 112, no. 1, pp. 167–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Lu, H. M. Zhao, J. Y. Li, X. Quan, and S. Chen, “Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity,” Separation and Purification Technology, vol. 62, no. 3, pp. 668–673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Zhao, W. H. Ma, C. H. Chen, J. C. Zhao, and Z. G. Shuai, “Efficient degradation of toxic organic pollutants with Ni2O3/TiO2xBx under visible irradiation,” Journal of the American Chemical Society, vol. 126, no. 15, pp. 4782–4783, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Chen, D. Yang, Q. Wang, and Z. Y. Jiang, “Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles,” Industrial and Engineering Chemistry Research, vol. 45, no. 12, pp. 4110–4116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Yuan, E. Wang, Y. Chen, W. Yang, J. Yao, and Y. Cao, “Doping mode, band structure and photocatalytic mechanism of B–N-codoped TiO2,” Applied Surface Science, vol. 257, no. 16, pp. 7335–7342, 2011. View at Publisher · View at Google Scholar
  20. J. J. Xu, Y. H. Ao, M. D. Chen, and D. G. Fu, “Low-temperature preparation of boron-doped titania by hydrothermal method and its photocatalytic activity,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 73–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Zaleska, E. Grabowska, J. W. Sobczak, M. Gazda, and J. Hupka, “Photocatalytic activity of boron-modified TiO2 under visible light: the effect of boron content, calcination temperature and TiO2 matrix,” Applied Catalysis B, vol. 89, no. 3-4, pp. 469–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Grzmil, M. Gleń, B. Kic, and K. Lubkowski, “Preparation and characterization of single-modified TiO2 for pigmentary applications,” Industrial and Engineering Chemistry Research, vol. 50, no. 11, pp. 6535–6542, 2011. View at Publisher · View at Google Scholar
  23. N. Feng, A. M. Zheng, Q. Wang et al., “Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study,” The Journal of Physical Chemistry C, vol. 115, no. 6, pp. 2709–2719, 2011. View at Publisher · View at Google Scholar
  24. S. C. Moon, H. Mametsuka, E. Suzuki, and Y. Nakahara, “Characterization of titanium-boron binary oxides and their photocatalytic activity for stoichiometric decomposition of water,” Catalysis Today, vol. 45, no. 1–4, pp. 79–84, 1998. View at Google Scholar · View at Scopus
  25. H. L. Fei, Y. P. Liu, Y. P. Li et al., “Selective synthesis of borated meso-macroporous and mesoporous spherical TiO2 with high photocatalytic activity,” Microporous and Mesoporous Materials, vol. 102, no. 1–3, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. L. Su, X. W. Zhang, S. Han, X. Q. Chen, and L. C. Lei, “F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition,” Electrochemistry Communications, vol. 9, no. 9, pp. 2291–2298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Finazzi, C. D. Valentin, and G. Pacchioni, “Nature of ti interstitials in reduced bulk anatase and rutile TiO2,” Journal of Physical Chemistry C, vol. 113, no. 9, pp. 3382–3385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. X. N. Lu, B. Z. Tian, F. Chen, and J. L. Zhang, “Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity,” Thin Solid Films, vol. 519, no. 1, pp. 111–116, 2010. View at Publisher · View at Google Scholar
  29. X. Q. Chen, X. W. Zhang, and L. C. Lei, “Electronic structures and photocatalysis properties under visible irradiation of F-doped TiO2 nanotube arrays,” Journal of Inorganic Materials, vol. 26, no. 4, pp. 369–374, 2011. View at Publisher · View at Google Scholar
  30. M. Fittipaldi, V. Gombac, T. Montini, P. Fornasiero, and M. Graziani, “A high-frequency (95 GHz) electron paramagnetic resonance study of B-doped TiO2 photocatalysts,” Inorganica Chimica Acta, vol. 361, no. 14-15, pp. 3980–3987, 2008. View at Publisher · View at Google Scholar
  31. Y. M. Wu, M. Y. Xing, J. L. Zhang, and F. Chen, “Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant,” Applied Catalysis B, vol. 97, no. 1-2, pp. 182–189, 2010. View at Publisher · View at Google Scholar
  32. J. Yuan, Y. K. Lv, Y. Li, and J. P. Li, “Preparation of mesoporous magnetic photocatalyst and its catalytic activity for degradation of nitrobenzene,” Chinese Journal of Catalysis, vol. 31, no. 5, pp. 597–603, 2010. View at Publisher · View at Google Scholar