Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 607283, 9 pages
http://dx.doi.org/10.1155/2012/607283
Research Article

Statistical Optimization of Operational Parameters for Enhanced Naphthalene Degradation by Photocatalyst

1School of Municipal and Environmental Engineering, Harbin Institute of Technology (HIT), 202 Haihe Road, Harbin 150090, China
2Institute of Architecture Design and Research, Harbin Institute of Technology, Harbin 150090, China
3State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
4Collage of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

Received 11 December 2011; Revised 13 February 2012; Accepted 15 February 2012

Academic Editor: Stéphane Jobic

Copyright © 2012 Aijuan Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Wilson and K. C. Jones, “Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review,” Environmental Pollution, vol. 81, no. 3, pp. 229–249, 1993. View at Google Scholar · View at Scopus
  2. B. Guieysse, M. D. Cirne, and B. Mattiasson, “Microbial degradation of phenanthrene and pyrene in a two liquid phase-partioning bioreactor,” Applied Microbiology and Biotechnology, vol. 56, pp. 796–802, 2001. View at Google Scholar
  3. A. Lair, C. Ferronato, J. M. Chovelon, and J. M. Herrmann, “Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions,” Journal of Photochemistry and Photobiology A, vol. 193, no. 2-3, pp. 193–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Maillacheruvu and S. Safaai, “Naphthalene removal from aqueous systems by Sagittarius sp,” Journal of Environmental Science and Health Part A, vol. 37, no. 5, pp. 845–861, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Pathak, D. Kantharia, A. Malpani, and D. Madamwar, “Naphthalene degradation by Pseudomonas sp. HOB1: in vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms,” Journal of Hazardous Materials, vol. 166, no. 2-3, pp. 1466–1473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Jia, H. Yin, J. S. Ye et al., “Characteristics and pathway of naphthalene degradation by pseudomonas sp. N7,” Journal of Environmental Science, vol. 29, no. 3, pp. 756–762, 2008. View at Google Scholar · View at Scopus
  7. F. Musat, A. Galushko, J. Jacob et al., “Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria,” Environmental Microbiology, vol. 11, no. 1, pp. 209–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Dou, X. Liu, and A. Ding, “Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 325–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Safinowski and R. U. Meckenstock, “Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture,” Environmental Microbiology, vol. 8, no. 2, pp. 347–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. W. J. Cooper, M. G. Nickelsen, R. V. Green, and S. P. Mezyk, “The removal of naphthalene from aqueous solutions using high-energy electron beam irradiation,” Radiation Physics and Chemistry, vol. 65, no. 4-5, pp. 571–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. R. K. Goel, J. R. V. Flora, and J. Ferry, “Mechanisms for naphthalene removal during electrolytic aeration,” Water Research, vol. 37, no. 4, pp. 891–901, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Pramauro, A. B. Prevot, M. Vincenti, and R. Gamberini, “Photocatalytic degradation of naphthalene in aqueous TiO2 dispersions: effect of non ionic surfactants,” Chemosphere, vol. 36, no. 7, pp. 1523–1542, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Dass, M. Muneer, and K. R. Gopidas, “Photocatalytic degradation of wastewater pollutants. Titanium-dioxide-mediated oxidation of polynuclear aromatic hydrocarbons,” Journal of Photochemistry and Photobiology A, vol. 77, no. 1, pp. 83–88, 1994. View at Google Scholar · View at Scopus
  14. L. Hykrdová, J. Jirkovský, G. Mailhot, and M. Bolte, “Fe(III) photoinduced and Q-TiO2 photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism,” Journal of Photochemistry and Photobiology A, vol. 151, no. 1–3, pp. 181–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. V. Mohan, T. Kisa, T. Ohkuma, R. A. Kanaly, and Y. Shimizu, “Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency,” Reviews in Environmental Science and Biotechnology, vol. 5, no. 4, pp. 347–374, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Lindner, J. Theurich, and D. W. Bahnemann, “Photocatalytic degradation of organic compounds: accelerating the process efficiency,” Water Science and Technology, vol. 35, no. 4, pp. 79–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Ohno, K. Tokieda, S. Higashida, and M. Matsumura, “Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene,” Applied Catalysis A, vol. 244, no. 2, pp. 383–391, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Pal and M. Sharon, “Photodegradation of polyaromatic hydrocarbons over thin film of TiO2 nanoparticles; a study of intermediate photoproducts,” Journal of Molecular Catalysis A, vol. 160, no. 2, pp. 453–460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Barrios, P. Sivov, D. D'Andrea, and O. Núñez, “Conditions for selective photocatalytic degradation of naphthalene in triton X-100 water solutions,” International Journal of Chemical Kinetics, vol. 37, no. 7, pp. 414–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. García-Martínez, L. Canoira, G. Blázquez, I. Da Riva, R. Alcántara, and J. F. Llamas, “Continuous photodegradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings,” Chemical Engineering Journal, vol. 110, no. 1–3, pp. 123–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-P. Wang, Y.-Z. Chen, Y. Wang, S.-J. Yuan, and H.-Q. Yu, “Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology,” Water Research, vol. 45, no. 17, pp. 5633–5640, 2011. View at Publisher · View at Google Scholar
  22. I. H. Cho and K. D. Zoh, “Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: optimization and modeling using a response surface methodology (RSM) based on the central composite design,” Dyes and Pigments, vol. 75, no. 3, pp. 533–543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. F. Caliman, C. Cojocaru, A. Antoniadis, and I. Poulios, “Optimized photocatalytic degradation of Alcian Blue 8 GX in the presence of TiO2 suspensions,” Journal of Hazardous Materials, vol. 144, no. 1-2, pp. 265–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. F. Fu, Y. Q. Zhao, X. D. Xue, W. C. Li, and A. O. Babatunde, “Multivariate-parameter optimization of acid blue-7 wastewater treatment by Ti/TiO2 photoelectrocatalysis via the Box-Behnken design,” Desalination, vol. 243, no. 1–3, pp. 42–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. R. Khataee, M. Zarei, and S. K. Asl, “Photocatalytic treatment of a dye solution using immobilized TiO 2 nanoparticles combined with photoelectro-Fenton process: optimization of operational parameters,” Journal of Electroanalytical Chemistry, vol. 648, no. 2, pp. 143–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Fathinia, A. R. Khataee, M. Zarei, and S. Aber, “Comparative photocatalytic degradation of two dyes on immobilized TiO 2 nanoparticles: effect of dye molecular structure and response surface approach,” Journal of Molecular Catalysis A, vol. 333, no. 1-2, pp. 73–84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Y. Wang, H. X. Wang, A. J. Wang, and M. Liu, “Surface modification of a magnetic SiO2 support and immobilization of a nano-TiO2 photocatalyst on it,” Chinese Journal of Catalysis, vol. 30, no. 9, pp. 939–944, 2009. View at Google Scholar · View at Scopus
  28. S. L. Akhnazarova and V. V. Kafarov, Experiment Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow, Russia, 1982.
  29. H. G. Neddermeijer, G. J. van Oortmarssen, N. Piersma, and R. Dekker, “Framework for Response Surface Methodology for simulation optimization,” in Proceedings of the 32nd Winter Simulation Conference Proceedings, pp. 129–136, Orlando, Fla, USA, December 2000. View at Scopus
  30. E. Pramauro, A. B. Prevot, M. Vincenti, and R. Gamberini, “Photocatalytic degradation of naphthalene in aqueous TiO2 dispersions: effect of non ionic surfactants,” Chemosphere, vol. 36, no. 7, pp. 1523–1542, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Google Scholar · View at Scopus
  32. N. Jaffrezic-Renault, P. Pichat, A. Foissy, and R. Mercier, “Study of the effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis, and labeled-ion adsorption,” Journal of Physical Chemistry, vol. 90, pp. 2733–2738, 1986. View at Google Scholar
  33. D. Duonghong, J. Ramsden, and M. Grätzel, “Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems,” Journal of the American Chemical Society, vol. 104, no. 11, pp. 2977–2985, 1982. View at Google Scholar · View at Scopus
  34. R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed E xperiments, John Wiley & Sons, Hoboken, NJ, USA, 2002.