Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 609561, 10 pages
http://dx.doi.org/10.1155/2012/609561
Research Article

Enhanced Photocatalytic Activity of Hierarchical Macro-Mesoporous Anatase by Incorporation

1Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U” Ciudad Universitaria, 58060 Morelia, MICH, Mexico
2Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U” Ciudad Universitaria, 58060 Morelia, MICH, Mexico

Received 27 January 2012; Revised 12 March 2012; Accepted 13 March 2012

Academic Editor: Stéphane Jobic

Copyright © 2012 M. L. García-Benjume et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Arora, C. Doty, and Y. Yuan, “Titanium dioxide nanoconjugates,” in Nanomaterials for the Life Sciences, C. S. S. R. Kumar, Ed., vol. 8, Wiley-VCH, Weinheim, Germany, 2006, Nanoconjugates. View at Google Scholar
  2. S. S. Liang, H. Makamba, S. Y. Huang, and S. H. Chen, “Nano-titanium dioxide composites for the enrichment of phosphopeptides,” Journal of Chromatography A, vol. 1116, no. 1-2, pp. 38–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. Páez, D. Poelman, J. P. Pirard, and B. Heinrichs, “Unpredictable photocatalytic ability of H2-reduced rutile-TiO2 xerogel in the degradation of dye-pollutants under UV and visible light irradiation,” Applied Catalysis B, vol. 94, no. 3-4, pp. 263–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, and Z. Zou, “Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2,” Applied Catalysis B, vol. 69, no. 3-4, pp. 138–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Xiao, J. Zhang, C. Xiao, Z. Si, and X. Tan, “Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension,” Solar Energy, vol. 82, no. 8, pp. 706–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Samantaray and K. M. Parida, “Effect of anions on the textural and catalytic activity of titania,” Journal of Materials Science, vol. 38, no. 9, pp. 1835–1848, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Byrne, P. A. Fernandez-Ibañez, P. S. M. Dunlop, D. M. A. Alrousan, and J. W. J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, Article ID 798051, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Yao, Y. Ohko, Y. Sekiguchi, A. Fujishima, and Y. Kubota, “Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film,” Journal of Biomedical Materials Research B, vol. 85, no. 2, pp. 453–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Mo, W. Xu, S. Xian, Y. Li, and S. Bai, “Antibacterial activity of silver-hydroxyapatite/titania nanocomposite coating on titanium against oral bacteria,” Key Engineering Materials, vol. 330–332, pp. 455–458, 2007, Bioceramics 19 (parts 1 and 2). View at Google Scholar · View at Scopus
  11. G. F. Fu, P. S. Vary, and C. T. Lin, “Anatase TiO2 nanocomposites for antimicrobial coatings,” Journal of Physical Chemistry B, vol. 109, no. 18, pp. 8889–8898, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. F. Liu, B. John, K. L. Yeung, and G. Si, “Non-UV based germicidal activity of metal-doped TiO2 coating on solid surfaces,” Journal of Environmental Sciences, vol. 19, no. 6, pp. 745–750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Mahltig, E. Gutmann, D. C. Meyer et al., “Solvothermal preparation of metalized titania sols for photocatalytic and antimicrobial coatings,” Journal of Materials Chemistry, vol. 17, no. 22, pp. 2367–2374, 2007. View at Google Scholar
  14. D. F. Ollis, “Integrating photocatalysis and membrane technologies for water treatment,” Annals of the New York Academy of Sciences, vol. 984, pp. 65–84, 2003. View at Google Scholar · View at Scopus
  15. S. Kohtani, A. Kudo, and T. Sakata, “Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties,” Chemical Physics Letters, vol. 206, no. 1–4, pp. 166–170, 1993. View at Google Scholar · View at Scopus
  16. V. Subramanian, Z. Ni, E. G. Seebauer, and R. I. Masel, “Synthesis of high-temperature titania-alumina supports,” Industrial and Engineering Chemistry Research, vol. 45, no. 11, pp. 3815–3820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. García-Benjume, M. I. Espitia-Cabrera, and M. E. Contreras-García, “Synthesis and characterization of mesoporous nanostructured TiO2–Al2O3 photocatalytic system,” in Processing of Nanoparticle Structures and Composites: Ceramic Transactions, T. Hinklin and K. Lu, Eds., vol. 208, pp. 79–89, 2009. View at Google Scholar
  18. G. Tian, K. Pan, H. Fu, L. Jing, and W. Zhou, “Enhanced photocatalytic activity of S-doped TiO2–ZrO2 nanoparticles under visible-light irradiation,” Journal of Hazardous Materials, vol. 166, no. 2-3, pp. 939–944, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Y. Zheng, K. Y. Qiu, and Y. Wei, “Investigation of Zr-incorporated mesoporous titania materials via nonsurfactant templated sol-gel route: synthesis, characterization and stability,” Journal of Materials Science, vol. 38, no. 3, pp. 437–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Fresno, M. D. Hernández-Alonso, D. Tudela, J. M. Coronado, and J. Soria, “Photocatalytic degradation of toluene over doped and coupled (Ti,M)O2 (M = Sn or Zr) nanocrystalline oxides: influence of the heteroatom distribution on deactivation,” Applied Catalysis B, vol. 84, no. 3-4, pp. 598–606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Wang, A. Geng, Y. Guo, S. Jiang, X. Qu, and L. Li, “A novel preparation of three-dimensionally ordered macroporous M/Ti (M = Zr or Ta) mixed oxide nanoparticles with enhanced photocatalytic activity,” Journal of Colloid and Interface Science, vol. 301, no. 1, pp. 236–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Xue, L. Huang, J. Q. Wang et al., “The direct synthesis of mesoporous structured MnO2/TiO2 nanocomposite: a novel visible-light active photocatalyst with large pore size,” Nanotechnology, vol. 19, no. 18, Article ID 185604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Wang, D. Yang, D. Chen, Y. Wang, and Z. Jiang, “Synthesis of anatase titania-carbon nanotubes nanocomposites with enhanced photocatalytic activity through a nanocoating-hydrothermal process,” Journal of Nanoparticle Research, vol. 9, no. 6, pp. 1087–1096, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. L. García-Benjume, M. I. Espitia-Cabrera, and M. E. Contreras-García, “The effect of synthesis parameters on the production of titania nanostructured spherical aggregates,” Journal of Ceramic Processing Research, vol. 11, no. 2, pp. 198–203, 2010. View at Google Scholar · View at Scopus
  25. E. Barajas-Ledesma, M. L. García-Benjume, I. Espitia-Cabrera, A. Bravo-Patiño, and M. E. Contreras-García, “Biocide activity of TiO2 nanostructured films,” Journal of Nano Research, vol. 9, pp. 17–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Sin, S. Lam, A. R. Mohamed, and K. Lee, “Degrading endocrine discrupting chemicals from wastewater by TiO2 photocatalysis: a review,” International Journal of Photoenergy, vol. 2012, Article ID 185159, 2012. View at Google Scholar
  27. L. R. Yu, Z. Zhu, K. C. Chan, H. J. Issaq, D. S. Dimitrov, and T. D. Veenstra, “Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra,” Journal of Proteome Research, vol. 6, no. 11, pp. 4150–4162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Ashman and E. L. Villar, “Phosphoproteomics and cancer research,” Clinical & Translational Oncology, vol. 11, no. 6, pp. 356–362, 2009. View at Google Scholar · View at Scopus
  29. A. Paradela and J. P. Albar, “Advances in the analysis of protein phosphorylation,” Journal of Proteome Research, vol. 7, no. 5, pp. 1809–1818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Zhang and J. C. Yu, “A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity,” Chemical Communications, vol. 9, no. 16, pp. 2078–2079, 2003. View at Google Scholar · View at Scopus
  31. P. Kluson, H. Luskova, L. Cerveny, J. Klisakova, and T. Cajthaml, “Partial photocatalytic oxidation of cyclopentene over titanium(IV) oxide,” Journal of Molecular Catalysis A, vol. 242, no. 1-2, pp. 62–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. S. Foster, V. B. Sulimov, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Structure and electrical levels of point defects in monoclinic zirconia,” Physical Review B, vol. 64, no. 22, Article ID 224108, 10 pages, 2001. View at Google Scholar · View at Scopus
  33. J. M. Herrmann, “Heterogeneous photocatalysis: state of the art and present applications,” Topics in Catalysis, vol. 34, no. 1–4, pp. 49–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Yu, L. Zhang, B. Cheng, and Y. Su, “Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania,” Journal of Physical Chemistry C, vol. 111, no. 28, pp. 10582–10589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Escobar, J. A. de Los Reyes, and T. Vivéros, “Influence of the synthesis additive on the textural and structural characteristics of sol-gel Al2O3–TiO2,” Industrial and Engineering Chemistry Research, vol. 39, no. 3, pp. 666–672, 2000. View at Google Scholar · View at Scopus
  36. E. Muñoz, J. L. Boldú, E. Andrade et al., “Intrinsically formed trivalent titanium ions in sol-gel titania,” Journal of the American Ceramic Society, vol. 84, no. 2, pp. 392–398, 2001. View at Google Scholar · View at Scopus
  37. G. Q. Liu, Z. G. Jin, X. X. Liu, T. Wang, and Z. F. Liu, “Anatase TiO2 porous thin films prepared by sol-gel method using CTAB surfactant,” Journal of Sol-Gel Science and Technology, vol. 41, no. 1, pp. 49–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. S. G. Liu, H. Wang, J. P. Li, N. Zhao, W. Wei, and Y. H. Sun, “A facile route to synthesize mesoporous zirconia with ultra high thermal stability,” Materials Research Bulletin, vol. 42, no. 1, pp. 171–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. L. García-Benjume, M. I. Espitia-Cabrera, and M. E. Contreras-García, “Hierarchical macro-mesoporous structures in the system TiO2–Al2O3, obtained by hydrothermal synthesis using Tween-20 as a directing agent,” Materials Characterization, vol. 60, no. 12, pp. 1482–1488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. F. del Monte, W. Larsen, and J. D. Mackenzie, “Stabilization of tetragonal ZrO2 in ZrO2–SiO2 binary oxides,” Journal of the American Ceramic Society, vol. 83, no. 3, pp. 628–634, 2000. View at Google Scholar · View at Scopus
  41. D. A. Ward and E. I. Ko, “Synthesis and structural transformation of zirconia aerogels,” Chemistry of Materials, vol. 5, no. 7, pp. 956–969, 1993. View at Google Scholar · View at Scopus
  42. X. Wang, J. C. Yu, C. Ho, Y. Hou, and X. Fu, “Photocatalytic activity of a hierarchically macro/mesoporous titania,” Langmuir, vol. 21, no. 6, pp. 2552–2559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. U. Ciesla and F. Schüth, “Ordered mesoporous materials,” Microporous and Mesoporous Materials, vol. 27, no. 2-3, pp. 131–149, 1999. View at Google Scholar · View at Scopus
  44. X. He and D. Antonelli, “Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves,” Angewandte Chemie—International Edition, vol. 41, no. 2, pp. 215–229, 2002. View at Google Scholar · View at Scopus
  45. J. Yu, Y. Su, and B. Cheng, “Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania,” Advanced Functional Materials, vol. 17, no. 12, pp. 1984–1990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Collins, D. Carriazo, S. A. Davis, and S. Mann, “Spontaneous template-free assembly of ordered macroporous titania,” Chemical Communications, vol. 10, no. 5, pp. 568–569, 2004. View at Google Scholar · View at Scopus
  47. J. Yu, G. Wang, B. Cheng, and M. Zhou, “Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders,” Applied Catalysis B, vol. 69, no. 3-4, pp. 171–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Yu, J. C. Yu, W. Ho et al., “Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania,” Applied Catalysis A, vol. 255, no. 2, pp. 309–320, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Flego, L. Carluccio, C. Rizzo, and C. Perego, “Synthesis of mesoporous SiO2–ZrO2 mixed oxides by sol-gel method,” Catalysis Communications, vol. 2, no. 2, pp. 43–48, 2001. View at Google Scholar · View at Scopus
  50. J. Zhao, Y. Yue, W. Hua, and Z. Gao, “Catalytic activities and properties of mesoporous sulfated Al2O3–ZrO2,” Catalysis Letters, vol. 116, no. 1-2, pp. 27–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Huang, Z. Zheng, Z. Ai, L. Zhang, X. Fan, and Z. Zou, “Core - Shell microspherical Ti1xZrxO2 solid solution photocatalysts directly from ultrasonic spray pyrolysis,” Journal of Physical Chemistry B, vol. 110, no. 39, pp. 19323–19328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. R. J. Tayade, T. S. Natarajan, and H. C. Bajaj, “Photocatalytic degradation of methylene blue dye using ultraviolet light emitting diodes,” Industrial and Engineering Chemistry Research, vol. 48, no. 23, pp. 10262–10267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Fan, G. Chen, D. Li et al., “Highly selective deethylation of rhodamine B on TiO2 prepared in supercritical fluids,” International Journal of Photoenergy, vol. 2012, Article ID 173865, 2012. View at Google Scholar
  54. J. H. Schattka, D. G. Shchukin, J. Jia, M. Antonietti, and R. A. Caruso, “Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique,” Chemistry of Materials, vol. 14, no. 12, pp. 5103–5108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. A. L. Linsebigler, G. Lu, and J. T. Yates Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. View at Google Scholar · View at Scopus