Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 628649, 11 pages
http://dx.doi.org/10.1155/2012/628649
Review Article

Photobiomodulation on Stress

1Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou 510006, China
2The Key Laboratory of Laser Life Science of Ministry of Education of China, South China Normal University, Guangzhou 510631, China

Received 17 February 2012; Revised 17 June 2012; Accepted 25 June 2012

Academic Editor: Rui Duan

Copyright © 2012 Timon Cheng-Yi Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Cannon, The Wisdom of the Body, W. W. Norton, New York, NY, USA, 1932.
  2. H. Selye, “Forty years of stress research: principal remaining problems and misconceptions,” Canadian Medical Association Journal, vol. 115, no. 1, pp. 53–56, 1976. View at Google Scholar · View at Scopus
  3. M. R. Hara, J. J. Kovacs, E. J. Whalen et al., “A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1,” Nature, vol. 477, no. 7364, pp. 349–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. R. Saunders and E. Verdin, “Cell biology: stress response and aging,” Science, vol. 323, no. 5917, pp. 1021–1022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Kourtis and N. Tavernarakis, “Cellular stress response pathways and ageing: intricate molecular relationships,” The EMBO Journal, vol. 30, no. 13, pp. 2520–2531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Y. Liu and P. Zhu, Intranasal Low Intensity Laser Therapy, People’s Military Medical Press, Beijing, China, 2009.
  7. T. C. Y. Liu, R. Liu, L. Zhu, J. Q. Yuan, M. Wu, and S. H. Liu, “Homeostatic photobiomodulation,” Front Optoelectron China, vol. 2, no. 1, pp. 1–8, 2009. View at Google Scholar
  8. T. C. Y. Liu, D. F. Wu, Z. Q. Gu, and M. Wu, “Applications of intranasal low intensity laser therapy in sports medicine,” Journal of Innovation in Optical Health Science, vol. 3, no. 1, pp. 1–16, 2010. View at Google Scholar
  9. I. Lestas, G. Vinnicombe, and J. Paulsson, “Fundamental limits on the suppression of molecular fluctuations,” Nature, vol. 467, no. 7312, pp. 174–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Youk and A. van Oudenaarden, “Growth landscape formed by perception and import of glucose in yeast,” Nature, vol. 462, no. 7275, pp. 875–879, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. H. Li, E. X. Wei, Y. Y. Liu, and T. C. Y. Liu, “Redundant photobiomodulation on low glucose induced dysfunctions of C2C12 myoblasts,” Lasers in Surgery and Medicine, vol. 44, supplement 24, p. 63, 2012. View at Google Scholar
  12. F. H. Li, E. X. Wei, Y. Y. Liu, and T. C. Y. Liu, “Redundant photobiomodulation on high glucose induced signal transduction network of C2C12 myoblasts,” Lasers in Surgery and Medicine, vol. 44, supplement 24, p. 63, 2012. View at Google Scholar
  13. T. C. Y. Liu, “Indirect photobiomodulation on tumors,” Lasers in Surgery and Medicine, vol. 44, no. 4, p. 358, 2012. View at Google Scholar
  14. N. A. Burd, D. W. D. West, A. W. Staples et al., “Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men,” PLoS ONE, vol. 5, no. 8, Article ID e12033, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. B. Salmon, A. A. Sadighi Akha, R. Buffenstein, and R. A. Miller, “Fibroblasts from naked mole-rats are resistant to multiple forms of cell injury, but sensitive to peroxide, ultraviolet light, and endoplasmic reticulum stress,” Journals of Gerontology A, vol. 63, no. 3, pp. 232–241, 2008. View at Google Scholar · View at Scopus
  16. J. Bigelow, A Discourse on Self-Limited Diseases, Kessinger, Kila, Mont, USA, 1835.
  17. G. D. Schiff, W. L. Galanter, J. Duhig, A. E. Lodolce, M. J. Koronkowski, and B. L. Lambert, “Principles of conservative prescribing,” Archives of Internal Medicine, vol. 171, no. 16, pp. 1433–1440, 2011. View at Google Scholar
  18. K. Y. Tsang, D. Chan, D. Cheslett et al., “Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function,” PLoS Biology, vol. 5, no. 3, article e44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Carter, S. Savic, J. Cole, and P. Wood, “Natural killer cell receptor expression in patients with severe and recurrent Herpes simplex virus-1 (HSV-1) infections,” Cellular Immunology, vol. 246, no. 2, pp. 65–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Bazzoni, M. Rossato, M. Fabbri et al., “Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5282–5287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. F. Puglia, R. P. Brenner, and M. J. Soso, “Relationship between prolonged and self-limited photoparoxysmal responses and seizure incidence: study and review,” Journal of Clinical Neurophysiology, vol. 9, no. 1, pp. 137–144, 1992. View at Google Scholar · View at Scopus
  22. P. A. Kumar, Y. Hu, Y. Yamamoto et al., “Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection,” Cell, vol. 147, no. 3, pp. 525–538, 2011. View at Google Scholar
  23. T. Busso, “Variable dose-response relationship between exercise training and performance,” Medicine and Science in Sports and Exercise, vol. 35, no. 7, pp. 1188–1195, 2003. View at Google Scholar · View at Scopus
  24. K. Cheung, P. A. Hume, and L. Maxwell, “Delayed onset muscle soreness: treatment strategies and performance factors,” Sports Medicine, vol. 33, no. 2, pp. 145–164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. T. C. Y. Liu, R. D. Fu, X. G. Liu, and Z. X. Tian, “Laser homeostaticts on delayed onset muscle soreness,” Journal of Physics, vol. 277, no. 1, Article ID 012021, 2011. View at Google Scholar
  26. E. Levine and T. Hwa, “Stochastic fluctuations in metabolic pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 22, pp. 9224–9229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Lee, A. S. Ye, A. K. Gardino et al., “Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks,” Cell, vol. 149, no. 4, pp. 780–794, 2012. View at Google Scholar
  28. M. A. Nowak, M. C. Boerlijst, J. Cooke, and J. M. Smith, “Evolution of genetic redundancy,” Nature, vol. 388, no. 6638, pp. 167–171, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. J. W. Jonker, J. M. Suh, A. R. Atkins et al., “A PPARã-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis,” Nature, vol. 485, no. 7398, pp. 391–394, 2012. View at Google Scholar
  30. S. D. Allison and J. B. H. Martiny, “Resistance, resilience, and redundancy in microbial communities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, supplement 1, pp. 11512–11519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. E. S. Valchinov and N. E. Pallikarakis, “Design and testing of low intensity laser biostimulator,” BioMedical Engineering Online, vol. 4, article 5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Chung, T. Dai, S. K. Sharma, Y. Y. Huang, J. D. Carroll, and M. R. Hamblin, “The nuts and bolts of low-level laser (light) therapy,” Annals of Biomedical Engineering, vol. 40, no. 2, pp. 516–533, 2011. View at Google Scholar
  33. L. Baratto, L. Calzà, R. Capra et al., “Ultra-low-level laser therapy,” Lasers in Medical Science, vol. 26, no. 1, pp. 103–112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. Coombe, C. T. Ho, M. A. Darendeliler et al., “The effects of low level laser irradiation on osteoblastic cells,” Clinical Orthodontics and Research, vol. 4, no. 1, pp. 3–14, 2001. View at Google Scholar
  35. M. Amognato, F. Squizzato, F. Facchin, L. Zaghetto, and L. Corti, “Cell growth modulation of human cells irradiated in vitro with low-level laser therapy,” Photomedicine and Laser Surgery, vol. 22, no. 6, pp. 523–526, 2004. View at Google Scholar · View at Scopus
  36. L. Frigo, J. S. S. Luppi, G. M. Favero et al., “The effect of low-level laser irradiation (In-Ga-Al-AsP—660 nm) on melanoma in vitro and in vivo,” BMC Cancer, vol. 9, article 404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. H. O. Schwartz-Filho, A. C. Reimer, C. Marcantonio, E. Marcantonio, and R. A. C. Marcantonio, “Effects of low-level laser therapy (685 nm) at different doses in osteogenic cell cultures,” Lasers in Medical Science, vol. 26, no. 4, pp. 539–543, 2011. View at Google Scholar
  38. X. Q. Mi, J. Y. Chen, and L. W. Zhou, “Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane,” Journal of Photochemistry and Photobiology B, vol. 83, no. 2, pp. 146–150, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. B. Rabelo, A. B. Villaverde, R. A. Nicolau, M. A. C. Salgado, M. D. S. Melo, and M. T. T. Pacheco, “Comparison between wound healing in induced diabetic and nondiabetic rats after low-level laser therapy,” Photomedicine and Laser Surgery, vol. 24, no. 4, pp. 474–479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Mafra de Lima, A. B. Villaverde, M. A. Salgado et al., “Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat,” Journal of Photochemistry and Photobiology B, vol. 101, no. 3, pp. 271–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. M. de Lima, A. B. Villaverde, R. Albertini et al., “Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines,” Lasers in Surgery and Medicine, vol. 43, no. 5, pp. 410–420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. S. Campbell and P. J. Murphy, “Extraocular circadian phototransduction in humans,” Science, vol. 279, no. 5349, pp. 396–399, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. K. P. Wright and C. A. Czeisler, “Absence of circadian phase resetting in response to bright light behind the knees,” Science, vol. 297, no. 5581, p. 571, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Douris, V. Southard, R. Ferrigi et al., “Effect of phototherapy on delayed onset muscle soreness,” Photomedicine and Laser Surgery, vol. 24, no. 3, pp. 377–382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Vinck, B. Cagnie, P. Coorevits, G. Vanderstraeten, and D. Cambier, “Pain reduction by infrared light-emitting diode irradiation: a pilot study on experimentally induced delayed-onset muscle soreness in humans,” Lasers in Medical Science, vol. 21, no. 1, pp. 11–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. X. G. Liu, Y. J. Zhou, T. C. Y. Liu, and J. Q. Yuan, “Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise,” Photomedicine and Laser Surgery, vol. 27, no. 6, pp. 863–869, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. A. Sussai, P. D. T. C. D. Carvalho, D. M. Dourado, A. C. G. Belchior, F. A. Dos Reis, and D. M. Pereira, “Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats,” Lasers in Medical Science, vol. 25, no. 1, pp. 115–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Xu, X. Zhao, T. C. Y. Liu, and H. Pan, “Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation,” Photomedicine and Laser Surgery, vol. 26, no. 3, pp. 197–202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Ilic, S. Leichliter, J. Streeter, A. Oron, L. DeTaboada, and U. Oron, “Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain,” Photomedicine and Laser Surgery, vol. 24, no. 4, pp. 458–466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Lacjaková, N. Bobrov, M. Poláková et al., “Effects of equal daily doses delivered by different power densities of low-level laser therapy at 670 nm on open skin wound healing in normal and corticosteroid-treated rats: a brief report,” Lasers in Medical Science, vol. 25, no. 5, pp. 761–766, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. E. S. Pessoa, R. M. Melhado, L. H. Theodoro, and V. G. Garcia, “A histologic assessment of the influence of low-intensity laser therapy on wound healing in steroid-treated animals,” Photomedicine and Laser Surgery, vol. 22, no. 3, pp. 199–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. M. M. Iyomasa, J. P. Mardegan Issa, M. L. de Queiróz Tavares et al., “Influence of low-level laser associated with osteogenic proteins recombinant human BMP-2 and Hevea brasiliensis on bone repair in Wistar rats,” Microscopy Research and Technique, vol. 75, no. 2, pp. 117–125, 2011. View at Google Scholar
  53. Y. Ueda and N. Shimizu, “Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells,” Journal of Clinical Laser Medicine and Surgery, vol. 21, no. 5, pp. 271–277, 2003. View at Google Scholar · View at Scopus
  54. J. F. Hou, H. Zhang, X. Yuan, J. Li, Y. J. Wei, and S. S. Hu, “In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation,” Lasers in Surgery and Medicine, vol. 40, no. 10, pp. 726–733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Rydén, L. Persson, H. Preber, and J. Bergström, “Effect of low level energy laser irradiation on gingival inflammation,” Swedish Dental Journal, vol. 18, no. 1-2, pp. 35–41, 1994. View at Google Scholar · View at Scopus
  56. S. C. de Souza, E. Munin, L. P. Alves, M. A. C. Salgado, and M. T. T. Pacheco, “Low power laser radiation at 685 nm stimulates stem-cell proliferation rate in Dugesia tigrina during regeneration,” Journal of Photochemistry and Photobiology B, vol. 80, no. 3, pp. 203–207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. K. M. Lagan, B. A. Clements, S. McDonough, and G. D. Baxter, “Low intensity laser therapy (830 nm) in the management of minor postsurgical wounds: a controlled clinical study,” Lasers in Surgery and Medicine, vol. 28, no. 1, pp. 27–32, 2001. View at Google Scholar
  58. S. L. Petersen, C. Botes, A. Olivier, and A. J. Guthrie, “The effect of low level laser therapy (LLLT) on wound healing in horses,” Equine Veterinary Journal, vol. 31, no. 3, pp. 228–231, 1999. View at Google Scholar · View at Scopus
  59. L. S. Pugliese, A. P. Medrado, S. R. Reis, and Z. A. Andrade, “The influence of low-level laser therapy on biomodulation of collagen and elastic fibers,” Pesquisa Odontologica Brasileira, vol. 17, no. 4, pp. 307–313, 2003. View at Google Scholar · View at Scopus
  60. A. R. A. P. Medrado, L. S. Pugliese, S. R. A. Reis, and Z. A. Andrade, “Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts,” Lasers in Surgery and Medicine, vol. 32, no. 3, pp. 239–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. J. T. Hopkins, T. A. McLoda, J. G. Seegmiller, and G. D. Baxter, “Low-level laser therapy facilitates superficial wound healing in humans: a triple-blind, sham-controlled study,” Journal of Athletic Training, vol. 39, no. 3, pp. 223–229, 2004. View at Google Scholar · View at Scopus
  62. M. Bayat, M. M. Vasheghani, N. Razavi, S. Taheri, and M. Rakhshan, “Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study,” Journal of Photochemistry and Photobiology B, vol. 78, no. 2, pp. 171–177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. V. Prabhu, S. B. S. Rao, N. B. Rao, K. B. Aithal, P. Kumar, and K. K. Mahato, “Development and evaluation of fiber optic probe-based helium-neon low-level laser therapy system for tissue regeneration-an in vivo experimental study,” Photochemistry and Photobiology, vol. 86, no. 6, pp. 1364–1372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Medrado, T. Costa, T. Prado, S. Reis, and Z. Andrade, “Phenotype characterization of pericytes during tissue repair following low-level laser therapy,” Photodermatology Photoimmunology and Photomedicine, vol. 26, no. 4, pp. 192–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. U. Akyol and M. Güngörmüş, “The effect of low-level laser therapy on healing of skin incisions made using a diode laser in diabetic rats,” Photomedicine and Laser Surgery, vol. 28, no. 1, pp. 51–55, 2010. View at Google Scholar · View at Scopus
  66. H. Ma, Y. X. Li, H. L. Chen, Y. X. Cui, and T. C. Y. Liu, “Effects of low-level laser therapy on wound healing in diabetic rats,” International Journal of Photoenergy, vol. 2012, Article ID 838496, 7 pages, 2012. View at Google Scholar
  67. E. L. Lim, K. G. Hollingsworth, B. S. Aribisala, M. J. Chen, J. C. Mathers, and R. Taylor, “Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol,” Diabetologia, vol. 54, no. 10, pp. 2506–2514, 2011. View at Google Scholar
  68. E. M. Kogawa, M. T. Kato, C. N. Santos, and P. C. Conti, “Evaluation of the efficacy of low-level laser therapy (LLLT) and the microelectric neurostimulation (MENS) in the treatment of myogenic temporomandibular disorders: a randomized clinical trial,” Journal of Applied Oral Science, vol. 13, no. 3, pp. 280–285, 2005. View at Google Scholar
  69. M. T. Kato, E. M. Kogawa, C. N. Santos, and P. C. R. Conti, “Tens and low-level laser therapy in the management of temporomandibular disorders,” Journal of Applied Oral Science, vol. 14, no. 2, pp. 130–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Maffulli and A. D. G. Baxter-Jones, “Common skeletal injuries in young athletes,” Sports Medicine, vol. 19, no. 2, pp. 137–149, 1995. View at Google Scholar · View at Scopus
  71. D. L. MacIntyre, W. D. Reid, and D. C. McKenzie, “Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications,” Sports Medicine, vol. 20, no. 1, pp. 24–40, 1995. View at Google Scholar · View at Scopus
  72. F. A. H. Al-Watban, X. Y. Zhang, and B. L. Andres, “Low-level laser therapy enhances wound healing in diabetic rats: a comparison of different lasers,” Photomedicine and Laser Surgery, vol. 25, no. 2, pp. 72–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Gál, M. Mokrý, B. Vidinský et al., “Effect of equal daily doses achieved by different power densities of low-level laser therapy at 635 nm on open skin wound healing in normal and corticosteroid-treated rats,” Lasers in Medical Science, vol. 24, no. 4, pp. 539–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. N. C. R. De Morais, A. M. Barbosa, M. L. Vale et al., “Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-induced arthritis,” Photomedicine and Laser Surgery, vol. 28, no. 2, pp. 227–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. W.-P. Hu, J.-J. Wang, C.-L. Yu, C.-C. E. Lan, G.-S. Chen, and H.-S. Yu, “Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria,” Journal of Investigative Dermatology, vol. 127, no. 8, pp. 2048–2057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. J. G. Clark, D. K. Madtes, and G. Raghu, “Effects of platelet-derived growth factor isoforms on human lung fibroblast proliferation and procollagen gene expression,” Experimental Lung Research, vol. 19, no. 3, pp. 327–344, 1993. View at Google Scholar · View at Scopus
  77. Y. Yamamoto, T. Kono, H. Kotani, S. Kasai, and M. Mito, “Effect of low-power laser irradiation on procollagen synthesis in human fibroblasts,” Journal of Clinical Laser Medicine and Surgery, vol. 14, no. 3, pp. 129–132, 1996. View at Google Scholar · View at Scopus
  78. L. Frigo, G. M. Fávero, H. J. Campos Lima et al., “Low-level laser irradiation (InGaAIP-660 nm) increases fibroblast cell proliferation and reduces cell death in a dose-dependent manner,” Photomedicine and Laser Surgery, vol. 28, supplement 1, pp. S151–S156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Komine, K. Ikeda, K. Tada, N. Hashimoto, N. Sugimoto, and K. Tomita, “Activation of the extracellular signal-regulated kinase signal pathway by light emitting diode irradiation,” Lasers in Medical Science, vol. 25, no. 4, pp. 531–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. J. A. Hackett and C. W. Greider, “Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis,” Oncogene, vol. 21, no. 4, pp. 619–626, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. Z. Ding, C. J. Wu, M. Jaskelioff, E. Ivanova et al., “Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases,” Cell, vol. 148, no. 5, pp. 896–907, 2012. View at Google Scholar
  82. M. Adamina, H. Kehlet, G. A. Tomlinson, A. J. Senagore, and C. P. Delaney, “Enhanced recovery pathways optimize health outcomes and resource utilization: a meta-analysis of randomized controlled trials in colorectal surgery,” Surgery, vol. 149, no. 6, pp. 830–840, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. J. L. Gordon, B. Ditto, K. L. Lavoie et al., “The effect of major depression on postexercise cardiovascular recovery,” Psychophysiology, vol. 48, no. 11, pp. 1605–1610, 2011. View at Google Scholar
  84. W. K. Hsu, K. J. McCarthy, J. W. Savage et al., “The Professional Athlete Spine Initiative: outcomes after lumbar disc herniation in 342 elite professional athletes,” Spine Journal, vol. 11, no. 3, pp. 180–186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. A. I. Efendiev, P. I. Tolstykh, A. I. Dadashev, and S. A. Azimov, “Increasing the scar strength after preventive skin irradiation with low-intensity laser,” Klinicheskaya Khirurgiya, no. 1, pp. 23–25, 1992 (Russian). View at Google Scholar · View at Scopus
  86. S. J. Tonsor, C. Scott, I. Boumaza, T. R. Liss, J. L. Brodsky, and E. Vierling, “Heat shock protein 101 effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature conditions,” Molecular Ecology, vol. 17, no. 6, pp. 1614–1626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. G. J. Wilmink, S. R. Opalenik, J. T. Beckham et al., “Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement,” The Journal of investigative dermatology, vol. 129, no. 1, pp. 205–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Derkacz, M. Protasiewicz, R. Poreba, A. Szuba, and R. Andrzejak, “Usefulness of intravascular low-power laser illumination in preventing restenosis after percutaneous coronary intervention,” American Journal of Cardiology, vol. 106, no. 8, pp. 1113–1117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Berchtold, M. Piccolis, N. Chiaruttini et al., “Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis,” Nature Cell Biology, vol. 14, no. 5, pp. 542–547, 2012. View at Google Scholar
  90. T. I. Karu, L. V. Pyatibrat, G. S. Kalendo, and R. O. Esenaliev, “Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro,” Lasers in Surgery and Medicine, vol. 18, no. 2, pp. 171–177, 1996. View at Google Scholar