Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 678394, 7 pages
http://dx.doi.org/10.1155/2012/678394
Research Article

Effect of Accelerated Thermal Ageing on the Selective Solar Thermal Harvesting Properties of Multiwall Carbon Nanotube/Nickel Oxide Nanocomposite Coatings

1CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa
2DST/CSIR National Centre for Nano-Structured Materials, P.O. Box 395, Pretoria 0001, South Africa
3School of Physics, University of KwaZulu Natal, Private Bag X54001, Durban 5000, South Africa

Received 6 February 2012; Accepted 27 March 2012

Academic Editor: Mohamed Sabry Abdel-Mottaleb

Copyright © 2012 Kittessa T. Roro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. W. Crabtree and N. S. Lewis, “Solar energy conversion,” Physics Today, vol. 60, no. 3, pp. 37–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley & Sons, New York, NY, USA, 1980.
  3. D. Katzen, E. Levy, and Y. Mastai, “Thin films of silica-carbon nanocomposites for selective solar absorbers,” Applied Surface Science, vol. 248, no. 1–4, pp. 514–517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Katumba, L. Olumekor, A. Forbes et al., “Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers,” Solar Energy Materials and Solar Cells, vol. 92, no. 10, pp. 1285–1292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Katumba, G. Makiwa, T. R. Baisitse, L. Olumekor, A. Forbes, and E. Wäckelgård, “Solar selective absorber functionality of carbon nanoparticles embedded in SiO2, ZnO and NiO matrices,” Physica Status Solidi C, vol. 5, no. 2, pp. 549–551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Mastasi, S. Polarz, and M. Antoriett, “Silica-carbon nanocomposite—a new concept for the design of solar absorbers,” Advanced Functional Materials, vol. 12, no. 3, pp. 197–202, 2002. View at Google Scholar
  7. B. Carlsson, U. Frei, M. Kohl, and K. Moller, “Accelerated life testing of solar energy materials—case study of some selective materials for DHW systems,” IEA SHCP Task X, 1994.
  8. K. T. Roro, N. Tile, B. Mwakikunga, B. Yalisi, and A. Forbes, “Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process,” Materials Science and Engineering B, vol. 177, no. 8, pp. 581–587, 2012. View at Google Scholar
  9. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, vol. 61, no. 20, pp. 14095–14107, 2000. View at Google Scholar · View at Scopus
  10. B. W. Mwakikunga, M. Maaza, K. T. Hillie, C. J. Arendse, T. Malwela, and E. Sideras-Haddad, “From phonon confinement to phonon splitting in flat single nanostructures: a case of VO2@V2O5 core-shell nano-ribbons,” Vibrational Spectroscopy, vol. 61, pp. 105–111, 2012. View at Publisher · View at Google Scholar
  11. F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” Journal of Chemical Physics, vol. 53, no. 3, pp. 1126–1130, 1970. View at Google Scholar · View at Scopus
  12. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Communications, vol. 39, no. 5, pp. 625–629, 1981. View at Google Scholar · View at Scopus
  13. B. W. Mwakikunga, E. Sideras-Haddad, and M. Maaza, “First synthesis of vanadium dioxide by ultrasonic nebula-spray pyrolysis,” Optical Materials, vol. 29, no. 5, pp. 481–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. W. Mwakikunga, A. Forbes, E. Sideras-Haddad, R. M. Erasmus, G. Katumba, and B. Masina, “Synthesis of tungsten oxide nanostructures by laser pyrolysis,” International Journal of Nanoparticles, vol. 1, no. 3, pp. 185–202, 2008. View at Publisher · View at Google Scholar
  15. B. W. Mwakikunga, A. Forbes, E. Sideras-Haddad, and C. Arendse, “Raman spectroscopy of WO3 nano-wires and thermo-chromism study of VO2 belts produced by ultrasonic spray and laser pyrolysis techniques,” Physica Status Solidi A, vol. 205, no. 1, pp. 150–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Katumba, B. W. Mwakikunga, and T. R. Mothibinyane, “FTIR and Raman spectroscopy of carbon nanoparticles in SiO2, ZnO and NiO matrices,” Nanoscale Research Letters, vol. 3, no. 11, pp. 421–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Govender, L. Shikwambana, B. W. Mwakikunga, A. Forbes, E. Sideras-Haddad, and R. M. Erasmus, “Esopen accessformation of tungsten oxide nanostructures by laser pyrolysis: stars, fibres and spheres,” Nanoscale Research Letters, vol. 6, no. 1, article 166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Machaka, B. W. Mwakikunga, E. Manikandan, T. E. Derry, and I. Sigalas, “Raman spectrum of hot-pressed boron suboxide,” Advanced Materials Letters, vol. 2, no. 1, p. 68, 2011. View at Google Scholar
  19. G. Goudec and Ph. Colamban, “Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties,” Progress in Crystal Growth and Characterization of Materials, vol. 53, no. 1, p. 56, 2007. View at Google Scholar