Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 702940, 11 pages
http://dx.doi.org/10.1155/2012/702940
Review Article

A Review on Nanotube Film Photocatalysts Prepared by Liquid-Phase Deposition

School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China

Received 15 September 2011; Revised 18 November 2011; Accepted 18 November 2011

Academic Editor: Jiaguo Yu

Copyright © 2012 Jinshu Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. M. Mahmoodi and M. Arami, “Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis,” Journal of Photochemistry and Photobiology B, vol. 94, no. 1, pp. 20–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Sayilkan, S. Erdemoǧlu, M. Asiltürk et al., “Photocatalytic performance of pure anatase nanocrystallite TiO2 synthesized under low temperature hydrothermal conditions,” Materials Research Bulletin, vol. 41, no. 12, pp. 2276–2285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  4. J. G. Yu, H. G. Yu, B. Cheng, and C. Trapalis, “Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes,” Journal of Molecular Catalysis A, vol. 249, no. 1-2, pp. 135–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. G. Yu, G. H. Wang, B. Cheng, and M. H. Zhou, “Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders,” Applied Catalysis B, vol. 69, no. 3-4, pp. 171–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Byrne, P. A. Fernandez-Ibanez, P. S. M. Dunlop, D. M. A. Alrousan, and J. W. J. Hamilton, “Photocatalytic enhancement for solar disinfection of water: a review,” International Journal of Photoenergy, vol. 2011, Article ID 798051, 12 pages, 2011. View at Publisher · View at Google Scholar
  7. C. C. Chang and W. C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials,” Journal of Polymer Science A, vol. 39, no. 19, pp. 3419–3427, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. K. Hazra and S. Basu, “High sensitivity and fast response hydrogen sensors based on electrochemically etched porous titania thin films,” Sensors and Actuators B, vol. 115, no. 1, pp. 403–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Q. Fan, C. J. Li, G. J. Yang, L. Z. Zhang, J. C. Gao, and Y. X. Xi, “Fabrication of nano-TiO2 coating for dye-sensitized solar cell by vacuum cold spraying at room temperature,” Journal of Thermal Spray Technology, vol. 16, no. 5-6, pp. 893–897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. V. E. Nawin, S. Noriaki, C. Tawatchai, K. Takeyuki, and T. Wiwut, “A step towards length control of titanate nanotubes using hydrothermal reaction with sonication pretreatment,” Nanotechnology, vol. 19, no. 3, pp. 1–6, 2008. View at Google Scholar
  11. R. R. Djenadic, L. M. Nikolic, K. P. Giannakopoulos, B. Stojanovic, and V. V. Srdic, “One-dimensional titanate nanostructures: synthesis and characterization,” Journal of the European Ceramic Society, vol. 27, no. 13–15, pp. 4339–4343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. K. Lee, C. C. Wang, M. D. Lyu, L. C. Juang, S. S. Liu, and S. H. Hung, “Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates,” Journal of Colloid and Interface Science, vol. 316, no. 2, pp. 562–569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. Zhang, X. Xiao, and J. M. Nan, “Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure,” Journal of Hazardous Materials, vol. 176, no. 1–3, pp. 617–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. C. Neves, J. M. F. Nogueira, T. Trindade, M. H. Mendonça, M. I. Pereira, and O. C. Monteiro, “Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation,” Journal of Photochemistry and Photobiology A, vol. 204, no. 2-3, pp. 168–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. C. Yu, Y. X. Ding, S. L. Zuo, and J. J. Liu, “Photocatalytic activity of nanosized cadmium sulfides synthesized by complex compound thermolysis,” International Journal of Photoenergy, vol. 2011, Article ID 762929, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Azimirad, P. K. Hosravi, A. Z. Moshfegh et al., “Synthesis of W(17)O(47) nanothick plates with preferred orientation and their photocatalytic activity,” Surface and Interface Analysis, vol. 43, no. 11, pp. 1397–1402, 2011. View at Google Scholar
  17. J. S. Wang, S. Yin, and T. Sato, “Synthesis and characterization of fibrous SrTiO3 particles,” Materials Science and Engineering B, vol. 131, no. 1–3, pp. 248–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. L. Costa and A. G. S. Prado, “TiO2 nanotubes as recyclable catalyst for efficient photocatalytic degradation of indigo carmine dye,” Journal of Photochemistry and Photobiology A, vol. 201, no. 1, pp. 45–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. H. Seo, M. Yuasa, T. Kida, J. S. Huh, K. Shimanoe, and N. Yamazoe, “Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes,” Sensors and Actuators B, vol. 137, no. 2, pp. 513–520, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. F. M. Wang, Z. S. Shi, F. Gong, J. T. Jiu, and M. Adachi, “Morphology control of anatase TiO2 by surfactant-assisted hydrothermal method* * supported by the natural science foundation of tianjin (No.06YFJMJC05000),” Chinese Journal of Chemical Engineering, vol. 15, no. 5, pp. 754–759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Colmenares, R. Luque, J. M. Campelo, F. Colmenares, Z. Karpiński, and A. A. Romero, “Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview,” Materials, vol. 2, no. 4, pp. 2228–2258, 2009. View at Publisher · View at Google Scholar
  22. Y. P. Guo, N. H. Lee, H. J. Oh et al., “Preparation of titanate nanotube thin film using hydrothermal method,” Thin Solid Films, vol. 516, no. 23, pp. 8363–8371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. L. Morgan, H. Y. Zhu, R. L. Forst, and E. R. Waclawik, “Determination of a morphological phase diagram of titania/titanate nanostructures from alkaline hydrothermal treatment of Degussa P25,” Chemistry of Materials, vol. 20, no. 12, pp. 3800–3802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. H. Lee, H. J. Oh, S. C. Jung, W. J. Lee, D. H. Kim, and S. J. Kim, “Photocatalytic properties of nanotubular-shaped TiO2 powders with anatase phase obtained from titanate nanotube powder through various thermal treatments,” International Journal of Photoenergy, vol. 2011, Article ID 327821, 7 pages, 2011. View at Publisher · View at Google Scholar
  25. G. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production,” Nature, vol. 393, no. 6683, pp. 346–349, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Masuda, K. Nishio, and N. Baba, “Fabrication of porous TiO2 films using two-step replication of microstructure of anodic alumina,” Japanese Journal of Applied Physics, vol. 31, no. 12, part 1, pp. L1775–L1777, 1992. View at Google Scholar · View at Scopus
  27. B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, “Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures,” Chemistry of Materials, vol. 9, no. 11, pp. 2544–2550, 1997. View at Google Scholar · View at Scopus
  28. J. P. Tu, L. P. Zhu, K. Hou, and S. Y. Guo, “Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide,” Carbon, vol. 41, no. 6, pp. 1257–1263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Yang, Z. Hu, Q. Wu, Y. N. Lü, X. Z. Wang, and Y. Chen, “Template-confined growth and structural characterization of amorphous carbon nanotubes,” Chemical Physics Letters, vol. 373, no. 5-6, pp. 580–585, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Z. Chu, K. Wada, S. Inoue, and S. Todoroki, “Fabrication of oxide nanostructures on glass by aluminum anodization and sol-gel process,” Surface and Coatings Technology, vol. 169-170, no. 2, pp. 190–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, “Direct preparation of anatase TiO2 nanotubes in porous alumina membranes,” Journal of Materials Chemistry, vol. 9, no. 12, pp. 2971–2972, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, vol. 268, no. 5216, pp. 1466–1468, 1995. View at Google Scholar · View at Scopus
  33. H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask,” Japanese Journal of Applied Physics, vol. 35, no. 1, pp. L126–L129, 1996. View at Google Scholar · View at Scopus
  34. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Polycrystalline nanopore arrays with hexagonal ordering on aluminum,” Journal of Vacuum Science and Technology A, vol. 17, no. 4, pp. 1428–1431, 1999. View at Google Scholar
  35. H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, and H. Masuda, “Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid,” Journal of Vacuum Science and Technology B, vol. 19, no. 2, pp. 569–572, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. P. P. Mardilovich, A. N. Govyadinov, N. I. Mukhurov, A. M. Rzhevskii, and R. Paterson, “New and modified anodic alumina membranes. Part I. Thermotreatment of anodic alumina membranes,” Journal of Membrane Science, vol. 98, no. 1-2, pp. 131–142, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Xu, G. Zangari, and R. M. Metzger, “Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier layer in hexagonally ordered nanoporous alumina,” Nano Letters, vol. 2, no. 1, pp. 37–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Kyotani, L. Tsai, A. Tomita et al., “Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film,” Chemistry of Materials, vol. 8, no. 8, pp. 2109–2113, 1996. View at Publisher · View at Google Scholar
  39. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. S. Ruoff, “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,” Chemistry of Materials, vol. 10, no. 1, pp. 260–267, 1998. View at Google Scholar · View at Scopus
  40. J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, “Highly-ordered carbon nanotube arrays for electronics applications,” Applied Physics Letters, vol. 75, no. 3, pp. 367–369, 1999. View at Google Scholar · View at Scopus
  41. K. B. Shelimov and M. Moskovits, “Composite nanostructures based on template-grown boron nitride nanotubules,” Chemistry of Materials, vol. 12, no. 1, pp. 250–254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Sauer, G. Brehm, S. Schneider et al., “Highly ordered monocrystalline silver nanowire arrays,” Journal of Applied Physics, vol. 91, no. 5, pp. 3243–3247, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Applied Physics Letters, vol. 78, no. 2, pp. 142–143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Shingubara, O. Okino, Y. Murakami, H. Sakaue, and T. Takahagi, “Fabrication of nanohole array on Si using self-organized porous alumina mask,” Journal of Vacuum Science and Technology B, vol. 19, no. 5, pp. 1901–1904, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Crouse, Y. H. Lo, A. E. Miller, and M. Crouse, “Self-ordered pore structure of anodized aluminum on silicon and pattern transfer,” Applied Physics Letters, vol. 76, no. 1, pp. 49–51, 2000. View at Google Scholar · View at Scopus
  46. J. Y. Liang, H. Chik, A. J. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: nonlithographic formation by anodic membrane template,” Journal of Applied Physics, vol. 91, no. 4, p. 2544, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. M. K. Li, C. W. Wang, and H. L. Li, “Synthesis of ordered Si nanowire arrays in porous anodic aluminum oxide templates,” Chinese Science Bulletin, vol. 46, no. 21, pp. 1793–1796, 2001. View at Google Scholar · View at Scopus
  48. S. Yamanaka, T. Hamaguchi, H. Muta, K. Kurosaki, and M. Uno, “Fabrication of oxide nanohole arrays by a liquid phase deposition method,” Journal of Alloys and Compounds, vol. 373, no. 1-2, pp. 312–315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. W. F. Jiang, Y. H. Ling, X. D. Bai, H. Y. Li, and D. Q. Cang, “In-situ template synthesis of TiO2 array films on Al substrates,” Rare Metal Materials and Engineering, vol. 36, no. 7, pp. 1178–1180, 2007. View at Google Scholar · View at Scopus
  50. Y. C. Zhao, M. Chen, T. Xu, W. M. Liu, and X. Liu, “Preparation of porous anodic oxide film on aluminum and its aplication in synthesis of 1-dimensional nanomaterials,” Chinese Journal of Chemical Physics, vol. 17, no. 4, pp. 369–374, 2004. View at Google Scholar · View at Scopus
  51. Z. Y. Liu, J. X. Chen, D. Z. Zhangm, and G. Q. Sun, “Investigation on nanostructural porous alumina with two dimension ordered arrangements,” Journal of Sichuan University, vol. 38, no. 3, p. 374, 2001. View at Google Scholar
  52. Y. T. Cui, J. S. Wang, H. Y. Li, and Z. Z. Wang, “Study on synthesis in situ and photocatalytic activity of TiO2 nanotubes array films,” Journal of Inorganic Materials, vol. 23, no. 6, pp. 1259–1262, 2008. View at Google Scholar · View at Scopus
  53. J. Zhang, J. E. Kielbasa, and D. L. Carroll, “Controllable fabrication of porous alumina templates for nanostructures synthesis,” Materials Chemistry and Physics, vol. 122, no. 1, pp. 295–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. T. Cui, J. S. Wang, H. Y. Li, and Z. Z. Wang, “Effects of AAO template on the surface microstructure of TiO2 nanoarray films fabricated by liquid phase deposition,” Chinese Journal of Inorganic Chemistry, vol. 25, no. 7, pp. 1274–1278, 2009. View at Google Scholar · View at Scopus
  55. J. G. Yu, G. P. Dai, and B. Cheng, “Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films,” Journal of Physical Chemistry C, vol. 114, no. 45, pp. 19378–19385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. G. P. Dai, J. G. Yu, and G. Liu, “Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays,” The Journal of Physical Chemistry C, vol. 115, no. 15, pp. 7339–7346, 2011. View at Google Scholar
  57. L. Zhao, J. R. Ran, Z. Shu, G. T. Dai, P. C. Zhai, and S. M. Wang, “Effects of calcination temperatures on photocatalytic activity of ordered titanate nanoribbon/SnO2 films fabricated during an EPD process,” International Journal of Photoenergy, vol. 2012, Article ID 472958, 7 pages, 2012. View at Publisher · View at Google Scholar
  58. W. F. Jiang, D. Q. Cang, S. J. Hao, Y. H. Ling, X. D. Bai, and Y. B. Zong, “Fabrication of TiO2 nanorod array film on Al plate by liquid phase deposition method,” Materials Science and Engineering, vol. 24, no. 6, pp. 805–807, 2006. View at Google Scholar
  59. J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, “The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition,” Journal of Physical Chemistry B, vol. 107, no. 50, pp. 13871–13879, 2003. View at Google Scholar · View at Scopus
  60. J. G. Yu and B. Wang, “Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays,” Applied Catalysis B, vol. 94, no. 3-4, pp. 295–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. P. F. Xing, J. S. Wang, J. X. Jin, Z. Q. Zhang, and Z. H. Wang, “Preparation of S-N Co-doped TiO2 visible light photocatalysts by mechan-chemical method and its photocatalytic activity,” Journal of Nanoscience and Nanotechnology, vol. 4, no. 2, pp. 29–33, 2007. View at Google Scholar
  62. L. Sun, J. Li, C. L. Wang et al., “Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity,” Journal of Hazardous Materials, vol. 171, no. 1–3, pp. 1045–1050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Okour, H. K. Shon, I. J. El Saliby, R. Naidu, J. B. Kim, and J. H. Kim, “Preparation and characterisation of titanium dioxide (TiO2) and thiourea-doped titanate nanotubes prepared from wastewater flocculated sludge,” Bioresource Technology, vol. 101, no. 5, pp. 1453–1458, 2009. View at Google Scholar
  64. J. J. Xu, Y. H. Ao, M. D. Chen, and D. G. Fu, “Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 73–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. G. F. Shang, H. B. Fu, S. G. Yang, and T. G. Xu, “Mechanistic study of visible-light-induced photodegradation of 4-chlorophenol by TIO2-xNx   ((0.021<x<0.049) ) with Low Nitrogen Concentration,” International Journal of Photoenergy, vol. 2012, Article ID 759306, 9 pages, 2012. View at Publisher · View at Google Scholar
  66. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Y. Bai, W. Liang, G. L. Zheng, and X. G. Zhao, “Photo-catalytic properties under visible light of S and N Co-doped titanium oxide films,” Journal of Taiyuan University of Technology, vol. 42, no. 1, pp. 74–77, 2011. View at Google Scholar
  68. H. M. Zhao, Y. Chen, X. Quan, and X. L. Ruan, “Preparation of Zn-doped TiO2 nanotubes electrode and its application in pentachlorophenol photoelectrocatalytic degradation,” Chinese Science Bulletin, vol. 52, no. 11, pp. 1456–1461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Li, H. Yun, and C. J. Lin, “The Fe-doped TiO2 nanotube arrays as a photoanode for cathodic protection of stainless steel,” Acta Physico, vol. 23, no. 12, pp. 1886–1892, 2007. View at Google Scholar · View at Scopus
  70. Z. H. Xu and J. G. Yu, “Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays,” Nanoscale, vol. 3, no. 8, pp. 3138–3144, 2011. View at Google Scholar
  71. T. H. Wang, Y. X. Li, S. Q. Peng, G. X. Lü, and S. B. Li, “Activity of rare earth doped TiO2 deposited with Pt for photocatalytic hydrogen generation,” Acta Chimica Sinica, vol. 63, no. 9, pp. 797–801, 2005. View at Google Scholar · View at Scopus
  72. J. Chen, M. Yao, and X. Wang, “Investigation of transition metal ion doping behaviors on TiO2 nanoparticles,” Journal of Nanoparticle Research, vol. 10, no. 1, pp. 163–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. J. G. Yu, G. P. Dai, and B. B. Huang, “Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays,” Journal of Physical Chemistry C, vol. 113, no. 37, pp. 16394–16401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Wu, J. C. Yu, and X. Z. Fu, “Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation,” Journal of Molecular Catalysis A, vol. 244, no. 1-2, pp. 25–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. D. R. Catal, “Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications,” Catalysis Today, vol. 122, no. 1-2, pp. 20–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. K. K. Akurati, A. Vital, J. P. Dellemann et al., “Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity,” Applied Catalysis B, vol. 79, no. 1-2, pp. 53–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. He, Q. Luo, Q. Z. Cai, X. W. Li, and D. Q. Zhang, “Microstructure and photocatalytic properties of WO3/TiO2 composite films by plasma electrolytic oxidation,” Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 242–248, 2011. View at Google Scholar
  78. Z. Z. Wang, J. S. Wang, H. Y. Li, G. S. Sun, and K. L. Huang, “Fabrication and photocatalytic activity of TiO2/SiO2 composite nanotubes,” Chemical Intermediate, vol. 37, no. 2, pp. 541–549, 2011. View at Google Scholar