Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 838231, 11 pages
http://dx.doi.org/10.1155/2012/838231
Research Article

PV Power-Generation System with a Phase-Shift PWM Technique for High Step-Up Voltage Applications

Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan

Received 14 February 2012; Accepted 20 June 2012

Academic Editor: F. Yakuphanoglu

Copyright © 2012 Cheng-Tao Tsai and Sin-Hua Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1216–1226, 2001. View at Google Scholar · View at Scopus
  2. S. Jemeï, D. Hissel, M. C. Péra, and J. M. Kauffmann, “A new modeling approach of embedded fuel-cell power generators based on artificial neural network,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 437–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEE Proceedings, vol. 142, no. 1, pp. 59–64, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Wakao, R. Ando, H. Minami et al., “Performance analysis of the PV/Wind/ Wave hybrid power generation system,” in Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion, pp. 2337–2340, May 2003. View at Scopus
  5. H. J. Chiu, H. M. Huang, L. W. Lin, and M. H. Tseng, “A multiple-input DC/DC converter for renewable energy systems,” in Proceddings of the IEEE International Conference on Industrial Technology (ICIT '05), pp. 1304–1308, December 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Jang and M. M. Jovanović, “A new family of full-bridge ZVS converters,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 701–708, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. E. H. Kim and B. H. Kwon, “Zero-voltage- and zero-current-switching full-bridge converter with secondary resonance,” IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 1017–1025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Liu, J. Yan, and X. Ruan, “Zero-voltage and zero-current-switching PWM combined three-level DC/DC converter,” IEEE Transactions on Industrial Electronics, vol. 57, no. 5, pp. 1644–1654, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Jang and M. M. Jovanović, “A new three-level soft-switched converter,” IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 75–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-C. Kuo, T.-J. Liang, and J.-F. Chen, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 594–601, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Mohr and F. W. Fuchs, “Clamping for current-fed dc/dc converters with recovery of clamping energy in fuel cell inverter systems,” in Proceedings of the European Conference on Power Electronics and Applications (EPE '07), pp. 1–10, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 594–601, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Matsuo, W. Lin, F. Kurokawa, T. Shigemizu, and N. Watanabe, “Characteristics of the multiple-input dc-dc converter,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 625–631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. G. Cho, J. W. Baek, C. Y. Jeong, D. W. Yoo, and K. Y. Joe, “Novel zero-voltage and zero-current-switching full bridge PWM converter using transformer auxiliary winding,” IEEE Transactions on Power Electronics, vol. 15, no. 2, pp. 250–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. M. Chen, Y. C. Liu, S. C. Hung, and C. S. Cheng, “Multi-input inverter for grid-connected hybrid PV/wind power system,” IEEE Transactions on Power Electronics, vol. 22, no. 3, pp. 1070–1077, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. M. Chen, Y. C. Liu, and S. H. Lin, “Double-input PWM DC/DC converter for high-/low-voltage sources,” IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1538–1545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Koyanagi, H. Nakamura, M. Kobayashi, Y. Suzuki, and R. Shimada, “Study on maximum power point tracking of wind turbine generator using a flywheel,” in Proceedings of the Power Conversion Conference, vol. 1, pp. 322–327, 2002.
  18. K. Amei, Y. Takayasu, T. Ohji, and M. Sakui, “maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit,” in Proceedings of Power Conversion Conference, vol. 3, pp. 1447–11452, 2002.
  19. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1292–1306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Patel and V. Agarwal, “MPPT scheme for a PV-fed single-phase single-stage grid-connected inverter operating in CCM with only one current sensor,” IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp. 256–263, 2009. View at Publisher · View at Google Scholar · View at Scopus