Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 874509, 8 pages
http://dx.doi.org/10.1155/2012/874509
Research Article

Fabrication of Al-Doped TiO2 Visible-Light Photocatalyst for Low-Concentration Mercury Removal

1Graduate Institute of Engineering Science and Technology, National Kaohsiung First University of Science and Technology, No. 2 Jhuoyue Road, Nanzih, Kaohsiung 811, Taiwan
2Department of Environmental, Safety, and Health Engineering, Tungnan University, Section 3, 152, Peishen Road, Shenkeng, New Taipei 222, Taiwan
3Institute of Environmental Engineering and Management, National Taipei University of Technology, Section 3, No. 1, Chung-Hsiao E. Road, Taipei 106, Taiwan

Received 13 September 2011; Revised 30 December 2011; Accepted 31 December 2011

Academic Editor: Gongxuan Lu

Copyright © 2012 Cheng-Yen Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. G. Pacyna, J. M. Pacyna, K. Sundseth et al., “Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020,” Atmospheric Environment, vol. 44, no. 20, pp. 2487–2499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Y. Wu, T. G. Lee, G. Tyree, E. Arar, and P. Biswas, “Capture of mercury in combustion systems by in situ-generated titania particles with UV irradiation,” Environmental Engineering Science, vol. 15, no. 2, pp. 137–148, 1998. View at Google Scholar · View at Scopus
  3. E. Pitoniak, C. Y. Wu, D. Londeree et al., “Nanostructured silica-gel doped with TiO2 for mercury vapor control,” Journal of Nanoparticle Research, vol. 5, no. 3-4, pp. 281–292, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Biswas and C. Y. Wu, “Nanoparticles and the environment,” Journal of the Air and Waste Management Association, vol. 55, no. 6, pp. 708–746, 2005. View at Google Scholar · View at Scopus
  5. E. Pitoniak, C. Y. Wu, D. W. Mazyck, K. W. Powers, and W. Sigmund, “Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal,” Environmental Science and Technology, vol. 39, no. 5, pp. 1269–1274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Li and C. Y. Wu, “Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite,” Environmental Science and Technology, vol. 40, no. 20, pp. 6444–6448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Li and C. Y. Wu, “Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite,” Environmental Engineering Science, vol. 24, no. 1, pp. 3–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E. J. Granite, W. P. King, D. C. Stanko, and H. W. Pennline, “Implications of mercury interactions with band-gap semiconductor oxides,” Main Group Chemistry, vol. 7, no. 3, pp. 227–237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. J. Granite, H. W. Pennline, and J. S. Hoffman, “Effects of photochemical formation of mercuric oxide,” Industrial and Engineering Chemistry Research, vol. 38, no. 12, pp. 5034–5037, 1999. View at Google Scholar · View at Scopus
  10. E. J. Granite and H. W. Pennline, “Photochemical removal of mercury from flue gas,” Industrial and Engineering Chemistry Research, vol. 41, no. 22, pp. 5470–5476, 2002. View at Google Scholar · View at Scopus
  11. E. J. Granite, M. C. Freeman, R. A. Hargis, W. J. O'Dowd, and H. W. Pennline, “The thief process for mercury removal from flue gas,” Journal of Environmental Management, vol. 84, no. 4, pp. 628–634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, and M. Anpo, “Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts,” Journal of Photochemistry and Photobiology A, vol. 148, no. 1–3, pp. 257–261, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, “Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations,” Journal of Physical Chemistry B, vol. 109, no. 23, pp. 11414–11419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. P. Qiu and S. J. Kalita, “Synthesis, processing and characterization of nanocrystalline titanium dioxide,” Materials Science and Engineering A, vol. 435-436, pp. 327–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Kanna and S. Wongnawa, “Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: characterization and photocatalytic study,” Materials Chemistry and Physics, vol. 110, no. 1, pp. 166–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. M. Oh, S. S. Kim, J. E. Lee, T. Ishigaki, and D. W. Park, “Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma,” Thin Solid Films, vol. 435, no. 1-2, pp. 252–258, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. X. H. Wang, J. G. Li, H. Kamiyama, and T. Ishigaki, “Fe-doped TiO2 nanopowders by oxidative pyrolysis of organometallic precursors in induction thermal plasma: synthesis and structural characterization,” Thin Solid Films, vol. 506-507, pp. 278–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. G. Li, X. H. Wang, H. Kamiyama, T. Ishigaki, and T. Sekiguchi, “RF plasma processing of Er-doped TiO2 luminescent nanoparticles,” Thin Solid Films, vol. 506-507, pp. 292–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Lee, S. M. Oh, and D. W. Park, “Synthesis of nano-sized Al doped TiO2 powders using thermal plasma,” Thin Solid Films, vol. 457, no. 1, pp. 230–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. X. W Zhang, M. H. Zhou, and L. C. Lei, “Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods,” Applied Catalysis A, vol. 282, no. 1-2, pp. 285–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Z. Li, L. Y. Shi, D. M. Xie, and H. Du, “Morphology and crystal structure of A1-doped TiO2 nanoparticles synthesized by vapor phase oxidation of titanium tetrachloride,” Journal of Non-Crystalline Solids, vol. 352, no. 38-39, pp. 4128–4135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Q. Wang, B. Gong, X. Yao, Y. Wang, and R. N. Lamb, “Preparation and microstructure properties of Al-doped TiO2-SiO2 gel-glass film,” Thin Solid Films, vol. 515, no. 4, pp. 2055–2058, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose, and S. A. Akbar, “Aluminum-doped TiO2 nano-powders for gas sensors,” Sensors and Actuators B, vol. 124, no. 1, pp. 111–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Y. Tsai, H. C. Hsi, H. Bai, K. S. Fan, and C. Chen, “TiO2-x nanoparticles synthesized using He/Ar thermal plasma and their effectiveness on low-concentration mercury vapor removal,” Journal of Nanoparticle Research, vol. 13, no. 10, pp. 4739–4748, 2011. View at Publisher · View at Google Scholar
  25. C. Y. Tsai, H. C. Hsi, H. Bai, K. S. Fan, and H. D. Sun, “Novel synthesis of Al-doped TiO2 nanoparticles by direct combination of aluminum, titanium and oxygen using thermal plasma torch,” Japan Journal of Applied Physics, vol. 51, p. 01AL01-1-6, 2012. View at Google Scholar
  26. R. A. Spurr, “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer,” Analytical Chemistry, vol. 29, no. 5, pp. 760–762, 1957. View at Google Scholar · View at Scopus
  27. S. Karvinen, “The effects of trace elements on the crystal properties of TiO2,” Solid State Sciences, vol. 5, no. 5, pp. 811–819, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. L. Taylor, G. E. Morris, and R. S. Smart, “Influence of aluminum doping on titania pigment structural and dispersion properties,” Journal of Colloid and Interface Science, vol. 262, no. 1, pp. 81–88, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Y. Lee, S. H. Park, M. S. Kang, S. C. Lee, and S. J. Choung, “Preparation of Al/TiO2 nanometer photo-catalyst film and the effect of H2O addition on photo-catalytic performance for benzene removal,” Applied Catalysis A, vol. 253, no. 2, pp. 371–380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. H. K. Shon, D. L. Cho, S. H. Na, J. B. Kim, H. J. Park, and J. H. Kim, “Development of a novel method to prepare Fe- and Al-doped TiO2 from wastewater,” Journal of Industrial and Engineering Chemistry, vol. 15, no. 4, pp. 476–482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” Journal of Molecular Catalysis A, vol. 161, no. 1-2, pp. 205–212, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. C. T. Wang and S. H. Ro, “Nanoparticle iron-titanium oxide aerogels,” Materials Chemistry and Physics, vol. 101, no. 1, pp. 41–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Steveson, T. Bredow, and A. R. Gerson, “MSINDO quantum chemical modelling study of the structure of aluminium-doped anatase and rutile titanium dioxide,” Physical Chemistry Chemical Physics, vol. 4, no. 2, pp. 358–365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Gesenhues and T. Rentschler, “Crystal growth and defect structure of Al3+-doped rutile,” Journal of Solid State Chemistry, vol. 143, no. 2, pp. 210–218, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. W. J. Zhang, Y. Li, S. L. Zhu, and F. H. Wang, “Copper doping in titanium oxide catalyst film prepared by dc reactive magnetron sputtering,” Catalysis Today, vol. 93-95, pp. 589–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Li, P. Murphy, and C. Y. Wu, “Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite,” Fuel Processing Technology, vol. 89, no. 6, pp. 567–573, 2008. View at Publisher · View at Google Scholar · View at Scopus