Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 898464, 8 pages
http://dx.doi.org/10.1155/2012/898464
Research Article

Photocatalytic Activity of Toluene under UV-LED Light with TiO2 Thin Films

1Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
2Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

Received 27 August 2012; Revised 25 September 2012; Accepted 25 September 2012

Academic Editor: Vincenzo Augugliaro

Copyright © 2012 Thammasak Rojviroon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Titanium dioxide (TiO2) and ferric-doped TiO2 (Fe-TiO2) thin films were synthesized on the surface of 304 stainless steel sheets using a simplified sol-gel preparation method. The Fe-TiO2 thin films were prepared with weight-to-volume ratios of /TiO2 of 0.3%, 0.5%, and 0.7%, respectively. The crystalline phase structures of the prepared TiO2 and Fe-TiO2 thin films were entirely anatase. The measured optical band gaps of the TiO2, 0.3% Fe-TiO2, 0.5% Fe-TiO2, and 0.7% Fe-TiO2 thin films were 3.27, 3.28, 3.22, and 2.82 eV, respectively. The grain sizes and other physical properties of the prepared thin films were also reported. The kinetics of the photocatalytic processes under a UV-LED light source could be explained by the Langmuir-Hinshelwood kinetic model with the specific rates of , , , and , for TiO2, 0.3% Fe-TiO2, 0.5% Fe-TiO2, and 0.7% Fe-TiO2, respectively. An increase in dopant concentration could enhance the photocatalytic activity of toluene decomposition as a result of lower optical band gaps, smaller grain size, and higher surface area.