Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 921908, 6 pages
Research Article

Effect of High-Temperature Annealing on Ion-Implanted Silicon Solar Cells

1Department of Materials Science and Engineering, Korea University, Seoul 136-713, Republic of Korea
2Nano-Process and Tech & Biz Division, National Nanofab Center, Daejeon 305-806, Republic of Korea

Received 8 November 2011; Revised 30 December 2011; Accepted 30 December 2011

Academic Editor: Junsin Yi

Copyright © 2012 Hyunpil Boo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


P-type and n-type wafers were implanted with phosphorus and boron, respectively, for emitter formation and were annealed subsequently at 950~1050 for 30~90 min for activation. Boron emitters were activated at or higher, while phosphorus emitters were activated at . QSSPC measurements show that the implied of boron emitters increases about 15 mV and the decreases by deep junction annealing even after the activation due to the reduced recombination in the emitter. However, for phosphorus emitters the implied decreases from 622 mV to 560 mV and the increases with deep junction annealing. This is due to the abrupt decrease in the bulk lifetime of the p-type wafer itself from 178 μs to 14 μs. PC1D simulation based on these results shows that, for p-type implanted solar cells, increasing the annealing temperature and time abruptly decreases the efficiency (%), while, for n-type implanted solar cells, deep junction annealing increases the efficiency and , especially (%) for backside emitter solar cells.