Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012, Article ID 936843, 15 pages
http://dx.doi.org/10.1155/2012/936843
Research Article

Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

1Department of Electrical Engineering, Chang-Gung University, Taoyuan 33302, Taiwan
2Department of Electrical Engineering, National Chin-Yi University of Technology, Taiping 411, Taiwan

Received 20 June 2012; Accepted 11 September 2012

Academic Editor: Tapas Mallick

Copyright © 2012 Sheng-Yu Tseng and Cheng-Tao Tsai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper proposes a photovoltaic (PV) power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT) to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT) algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.