Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 146582, 7 pages
http://dx.doi.org/10.1155/2013/146582
Research Article

Structural and Optoelectronic Properties of CdSe Tetrapod Nanocrystals for Bulk Heterojunction Solar Cell Applications

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea

Received 23 December 2012; Revised 1 May 2013; Accepted 16 May 2013

Academic Editor: Peter Rupnowski

Copyright © 2013 Nguyen Tam Nguyen Truong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. C. Greenham, X. Peng, and A. P. Alivisatos, “Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity,” Physical Review B, vol. 54, no. 24, pp. 17628–17637, 1996. View at Google Scholar · View at Scopus
  2. B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Advances in Colloid and Interface Science, vol. 138, no. 1, pp. 1–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Liang, Z. Xu, J. Xia et al., “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Advanced Materials, vol. 22, no. 20, pp. E135–E138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Dou, J. You, J. Yang et al., “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nature Photonics, vol. 6, no. 3, pp. 180–185, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science, vol. 295, no. 5564, pp. 2425–2427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Kim, J. Y. Moon, and H. S. Lee, “Growth of ZnO nanorods on various substrates by electrodeposition,” Electronic Materials Letters, vol. 5, no. 3, pp. 135–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. A. Chate, S. S. Patil, J. S. Patil, D. J. Sathe, and P. P. Hankare, “Nanocrystaline CdSe: structural and photoelectrochemical characterization,” Electronic Materials Letters, vol. 8, no. 6, pp. 553–558, 2012. View at Google Scholar
  8. N. T. N. Truong and C. Park, “Enhancement of CdSe/poly (3-hexylthiophene) bulk hetero junction solar cell efficiency by surface ligand exchange and thermal treatment,” Japanese Journal of Applied Physics, vol. 51, article 10NE27, 6 pages, 2012. View at Google Scholar
  9. H. Chen, J. Yoo, Y. Liu, and G. Zhao, “Green synthesis and characterization of se nanoparticles and nanorods,” Electronic Materials Letters, vol. 7, no. 4, pp. 333–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Kim, C. Hwang, D. Gwoo et al., “Synthesis and characterization of CdS nanocrystals in a novel phosphate glass,” Electronic Materials Letters, vol. 7, no. 4, pp. 309–312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. K. Mishra, R. K. Srivastava, S. G. Prakash, R. S. Yadav, and A. C. Panday, “Structural, photoconductivity and photoluminescence characterization of cadmium sulfide quantum dots prepared by a co-precipitation method,” Electronic Materials Letters, vol. 7, no. 1, pp. 31–38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Luo, P. Liu, N. T. N. Truong, U. Farva, and C. Park, “Photoluminescence blue-shift of CdSe nanoparticles caused by exchange of surface capping layer,” Journal of Physical Chemistry C, vol. 115, no. 43, pp. 20817–20823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. S. Stan, M. S. Secula, and T. H. Oh, “Highly luminescent polystyrene embedded CdSe quantum dots obtained through a modified colloidal synthesis route,” Electronic Materials Letters, vol. 8, pp. 275–281, 2012. View at Google Scholar
  14. S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Letters, vol. 10, no. 1, pp. 239–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Sun, E. Marx, and N. C. Greenham, “Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers,” Nano Letters, vol. 3, no. 7, pp. 961–963, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Querner, P. Reiss, S. Sadki, M. Zagorska, and A. Pron, “Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals,” Physical Chemistry Chemical Physics, vol. 7, no. 17, pp. 3204–3209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Kalyuzhny and R. W. Murray, “Ligand effects on optical properties of CdSe nanocrystals,” Journal of Physical Chemistry B, vol. 109, no. 15, pp. 7012–7021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Lee, S. W. Yoon, J. P. Ahn et al., “Synthesis of type II CdTe/CdSe heterostructure tetrapod nanocrystals for PV applications,” Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 779–782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Liu, W. Wang, H. Yu, Z. Wu, J. Peng, and Y. Cao, “Surface ligand effects in MEH-PPV/TiO2 hybrid solar cells,” Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1403–1409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Guerrero, P. H. Mutin, and A. Vioux, “Anchoring of phosphonate and phosphinate coupling molecules on titania particles,” Chemistry of Materials, vol. 13, no. 11, pp. 4367–4373, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Zhang, S. Ge, Y. Wang et al., “Use of functionalized WS2 nanotubes to produce new polystyrene/polymethylmethacrylate nanocomposites,” Polymer, vol. 44, no. 7, pp. 2109–2115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Ramis and G. Busca, “FTIR spectra of adsorbed n-butylamine,” Journal of Molecular Structure, vol. 193, pp. 93–100, 1989. View at Google Scholar · View at Scopus
  23. P. Chou, C. Chen, C. Cheng et al., “Spectroscopy and femtosecond dynamics of type-II CdTe/CdSe core-shell quantum dots,” ChemPhysChem, vol. 7, no. 1, pp. 222–228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chemistry of Materials, vol. 15, no. 22, pp. 4300–4308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Pang, L. Zhao, Y. Cai et al., “CdSe nano-tetrapods: controllable synthesis, structure analysis, and electronic and optical properties,” Chemistry of Materials, vol. 17, no. 21, pp. 5263–5267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Jun, S. Lee, N. Kang, and J. Cheon, “Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system,” Journal of the American Chemical Society, vol. 123, no. 21, pp. 5150–5151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Carbone, S. Kudera, E. Carlino et al., “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” Journal of the American Chemical Society, vol. 128, no. 3, pp. 748–755, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Chandrasekharan and P. V. Kamat, “Tuning the properties of CdSe nanoparticles in reverse micelles,” Research on Chemical Intermediates, vol. 28, no. 7–9, pp. 847–856, 2002. View at Google Scholar · View at Scopus
  29. J. H. Adair, T. Li, T. Kido et al., “Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles,” Materials Science and Engineering R, vol. 23, no. 4-5, pp. 139–242, 1998. View at Google Scholar · View at Scopus
  30. M. L. Monroe, Y. W. Kim, N. T. N. Truong et al., “Effect of surface modification by solvent exchange on hybrid bulk heterojunction solar cell performance,” Proceeding of Materials Research Society, vol. 1013, 1013-Z07-10, 2007. View at Google Scholar
  31. C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, “Printing highly efficient organic solar cells,” Nano Letters, vol. 8, no. 9, pp. 2806–2813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. Olson, G. P. Gray, and S. A. Carter, “Optimizing hybrid photovoltaics through annealing and ligand choice,” Solar Energy Materials and Solar Cells, vol. 93, no. 4, pp. 519–523, 2009. View at Publisher · View at Google Scholar · View at Scopus