Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 178017, 9 pages
http://dx.doi.org/10.1155/2013/178017
Research Article

Optical and Electrical Properties of Thin Films of CuS Nanodisks Ensembles Annealed in a Vacuum and Their Photocatalytic Activity

1Facultad de Química, Materiales Universidad Autónoma de Querétaro, 76010 Querétaro, QRO, Mexico
2Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, 31109 Chihuahua, CHIH, Mexico
3Departmento de Física, CINVESTAV, Apartado, Postal 14-740, 07000 México, DF, Mexico
4Cinvestav-IPN, Unidad Querétaro, Apartado Postal 1-798, 76230 Querétaro, QRO, Mexico

Received 25 May 2013; Revised 9 August 2013; Accepted 12 August 2013

Academic Editor: Niyaz Mohammad Mahmoodi

Copyright © 2013 J. Santos Cruz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Nair and M. T. S. Nair, “Chemically deposited SnS-CuxS thin films with high solar absorptance: new approach to all-glass tubular solar collectors,” Journal of Physics D, vol. 24, no. 1, pp. 83–87, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Mattox and R. R. Sowell, “High absorptivity solar absorbing coatings,” Journal of Vacuum Science & Technology, vol. 11, no. 4, pp. 793–796, 1974. View at Google Scholar · View at Scopus
  3. S. B. Gadgil, R. Thangaraj, J. V. Iyer, A. K. Sharma, B. K. Gupta, and O. P. Agnihotri, “Spectrally selective copper sulphide coatings,” Solar Energy Materials, vol. 5, no. 2, pp. 129–140, 1981. View at Google Scholar · View at Scopus
  4. P. J. Sebastian, O. Gomez-Daza, J. Campos, L. Baños, and P. K. Nair, “The structural, transport and optical properties of screen printed CuxS thick films,” Solar Energy Materials and Solar Cells, vol. 32, no. 2, pp. 159–168, 1994. View at Google Scholar · View at Scopus
  5. S. Lindroos, A. Arnold, and M. Leskelä, “Growth of CuS thin films by the successive ionic layer adsorption and reaction method,” Applied Surface Science, vol. 158, no. 1, pp. 75–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. B. He, A. Polity, I. Österreicher et al., “Hall effect and surface characterization of Cu2S and CuS films deposited by RF reactive sputtering,” Physica B, vol. 308–310, pp. 1069–1073, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Adelifard, H. Eshghi, and M. M. B. Mohagheghi, “An investigation on substrate temperature and copper to sulphur molar ratios on optical and electrical properties of nanostructural CuS thin films prepared by spray pyrolysis method,” Applied Surface Science, vol. 258, no. 15, pp. 5733–5738, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. S. Nair and P. K. Nair, “SnS—CuxS thin-film combination: a desirable solar control coating for architectural and automobile glazings,” Journal of Physics D, vol. 24, no. 3, pp. 450–453, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Erokhina, V. Erokhin, C. Nicolini, F. Sbrana, D. Ricci, and E. di Zitti, “Microstructure origin of the conductivity differences in aggregated CuS films of different thickness,” Langmuir, vol. 19, no. 3, pp. 766–771, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Šetkus, A. Galdikas, A. Mironas et al., “Properties of CuxS thin film based structures: influence on the sensitivity to ammonia at room temperatures,” Thin Solid Films, vol. 391, no. 2, pp. 275–281, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. U. Ubale, D. M. Choudhari, J. S. Kantale et al., “Synthesis of nanostructured CuxS thin films by chemical route at room temperature and investigation of their size dependent physical properties,” Journal of Alloys and Compounds, vol. 509, no. 37, pp. 9249–9254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. X. P. Shen, H. Zhao, H. Q. Shu, H. Zhou, and A. H. Yuan, “Self-assembly of CuS nanoflakes into flower-like microspheres: synthesis and characterization,” Journal of Physics and Chemistry of Solids, vol. 70, no. 2, pp. 422–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Jiang, W. Hu, H. Wang, B. Shen, and Y. Deng, “Synthesis, formation mechanism and photocatalytic property of nanoplate-based copper sulfide hierarchical hollow spheres,” Chemical Engineering Journal, vol. 189-190, pp. 443–450, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Liu and D. Xue, “Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route,” Journal of Crystal Growth, vol. 311, no. 3, pp. 500–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Chakrabarti and D. E. Laughlin, “The Cu-S (Copper-Sulfur) system,” Bulletin of Alloy Phase Diagrams, vol. 4, no. 3, pp. 254–271, 1983. View at Publisher · View at Google Scholar · View at Scopus
  16. R. J. Goble, “The relationship between crystal structure, bonding and cell dimensions in the copper sufides,” Canadian Mineralogist, vol. 23, no. 1, pp. 61–76, 1985. View at Google Scholar · View at Scopus
  17. D. F. A. Koch and R. J. McIntyre, “The application of reflectance spectroscopy to a study of the anodic oxidation of cuprous sulphide,” Journal of Electroanalytical Chemistry, vol. 71, no. 3, pp. 285–296, 1976. View at Google Scholar · View at Scopus
  18. S. R. Das, V. D. Vankar, P. Nath, and K. L. Chopra, “The preparation of Cu2S films for solar cells,” Thin Solid Films, vol. 51, no. 2, pp. 257–264, 1978. View at Google Scholar · View at Scopus
  19. D. Selle and J. Maege, “Elektrische und optische Eigenschaften von Cu2S-Aufdampfschichten,” Physica Status Solidi B, vol. 30, no. 2, pp. k153–k155, 1968. View at Publisher · View at Google Scholar
  20. Z. Cheng, S. Wang, D. Si, and B. Geng, “Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route,” Journal of Alloys and Compounds, vol. 492, no. 1-2, pp. L44–L49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Podder, R. Kobayashi, and M. Ichimura, “Photochemical deposition of CuxS thin films from aqueous solutions,” Thin Solid Films, vol. 472, no. 1-2, pp. 71–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Z. Xu, S. Xu, J. Geng, G. X. Li, and J. J. Zhu, “The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-β-cyclodextrin as a template under sonication,” Ultrasonics Sonochemistry, vol. 13, no. 5, pp. 451–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. X. H. Liao, N. Y. Chen, S. Xu, S. B. Yang, and J. J. Zhu, “A microwave assisted heating method for the preparation of copper sulfide nanorods,” Journal of Crystal Growth, vol. 252, no. 4, pp. 593–598, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Thongtem, C. Wichasilp, and T. Thongtem, “Transient solid-state production of nanostructured CuS flowers,” Materials Letters, vol. 63, no. 28, pp. 2409–2412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. K. Maji, N. Mukherjee, A. K. Dutta et al., “Deposition of nanocrystalline CuS thin film from a single precursor: structural, optical and electrical properties,” Materials Chemistry and Physics, vol. 130, no. 1-2, pp. 392–397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Nomura, K. Miyawaki, T. Toyosaki, and H. Matsuda, “Preparation of copper sulfide thin layers by a single source MOCVD process,” Chemical Vapor Deposition, vol. 2, no. 5, pp. 174–179, 1996. View at Google Scholar · View at Scopus
  27. M. T. S. Nair, L. Guerrero, and P. K. Nair, “Conversion of chemically deposited CuS thin films to Cu1.8S and Cu1.96S by annealing,” Semiconductor Science and Technology, vol. 13, no. 10, pp. 1164–1169, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Roy, K. Mondal, and S. K. Srivastava, “Synthesis of twinned CuS nanorods by a simple wet chemical method,” Crystal Growth and Design, vol. 8, no. 5, pp. 1530–1534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. A. Isac, A. Duta, A. Kriza, I. A. Enesca, and M. Nanu, “The growth of CuS thin films by Spray Pyrolysis,” Journal of Physics, vol. 61, no. 1, pp. 477–481, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Schneider, Y. Yang, and T. J. Marks, “Growth of highly oriented chalcocite thin films on glass by aerosol-assisted spray pyrolysis using a new single-source copper thiolate precursor,” Chemistry of Materials, vol. 17, no. 17, pp. 4286–4288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Naşcu, I. Pop, V. Ionescu, E. Indrea, and I. Bratu, “Spray pyrolysis deposition of CuS thin films,” Materials Letters, vol. 32, no. 2-3, pp. 73–77, 1997. View at Google Scholar · View at Scopus
  32. T. Y. Ding, M. S. Wang, S. P. Guo, G. C. Guo, and J. S. Huang, “CuS nanoflowers prepared by a polyol route and their photocatalytic property,” Materials Letters, vol. 62, no. 30, pp. 4529–4531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Mukherjee, A. Sinha, G. G. Khan, D. Chandra, A. Bhaumik, and A. Mondal, “A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique,” Materials Research Bulletin, vol. 46, no. 1, pp. 6–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Y. Zhu, Y. Xie, X. W. Zheng et al., “Fabrication of novel urchin-like architecture and snowflake-like pattern CuS,” Journal of Crystal Growth, vol. 260, no. 3-4, pp. 494–499, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. T. H. Larsen, M. Sigman, A. Ghezelbash, R. C. Doty, and B. A. Korgel, “Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor,” Journal of the American Chemical Society, vol. 125, no. 19, pp. 5638–5639, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. M. B. Sigman Jr., A. Ghezelbash, T. Hanrath et al., “Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets,” Journal of the American Chemical Society, vol. 125, no. 51, pp. 16050–16057, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. H. Warner, M. H. Rümmeli, T. Gemming, B. Büchner, and A. D. Briggs, “Direct imaging of rotational stacking faults in few layer graphene,” Nano Letters, vol. 9, no. 1, pp. 102–106, 2009. View at Publisher · View at Google Scholar
  38. F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, “Ordered stacking fault arrays in silicon nanowires,” Nano Letters, vol. 9, no. 7, pp. 2774–2779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. M. Lu, W. S. Hwang, J. S. Yang, and H. C. Chuang, “Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering,” Thin Solid Films, vol. 420-421, pp. 54–61, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Xuping and C. Guoping, “The microstructure and electrochromic properties of nickel oxide films deposited with different substrate temperatures,” Thin Solid Films, vol. 298, no. 1-2, pp. 53–56, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. D. A. Neamen, Semiconductor Physics & Devices, Irwin, 2nd edition, 1997.
  42. M. Ristov, G. Sinadinovski, I. Grozdanov, and M. Mitreski, “Chemical deposition of TIN(II) sulphide thin films,” Thin Solid Films, vol. 173, no. 1, pp. 53–58, 1989. View at Google Scholar · View at Scopus
  43. A. E. Pop, V. Popescu, M. Danila, and M. N. Batin, “Optical properties of CUxS nano-powders,” Chalcogenide Letters, vol. 8, no. 6, pp. 363–370, 2011. View at Google Scholar · View at Scopus
  44. D. F. Ollis, E. Pelizzetti, and N. Serpone, “Destruction of water contaminants,” Environmental Science and Technology, vol. 25, no. 9, pp. 1523–1529, 1991. View at Google Scholar · View at Scopus
  45. I. A. Salem and M. S. El-Maazawi, “Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces,” Chemosphere, vol. 41, no. 8, pp. 1173–1180, 2000. View at Publisher · View at Google Scholar · View at Scopus