Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 206129, 7 pages
http://dx.doi.org/10.1155/2013/206129
Research Article

Kinetics and Photodegradation Study of Aqueous Methyl tert-Butyl Ether Using Zinc Oxide: The Effect of Particle Size

1Chemistry Department, College of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
2Chemistry Department, College of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3Chemistry Department, College of Sciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
4Center for Refining & Petrochemicals, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Received 27 April 2013; Revised 24 July 2013; Accepted 25 August 2013

Academic Editor: Meenakshisundaram Swaminathan

Copyright © 2013 Zaki S. Seddigi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Day, R. F. Reinke, and J. A. M. Thomson, “Fate and transport of fuel components below slightly leaking underground storage tanks technical note,” Environmental Forensic, vol. 2, pp. 21–28, 2001. View at Google Scholar
  2. C. Guillard, N. Charton, and P. Pichat, “Degradation mechanism of t-butyl methyl ether (MTBE) in atmospheric droplets,” Chemosphere, vol. 53, no. 5, pp. 469–477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Zang and R. Farhood, “Effects of hydrogen peroxide concentration and ultraviolet light intensity on methyl tert-butyl ether degradation kinetics,” Chemical Engineering Science, vol. 60, no. 6, pp. 1641–1648, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Selli, C. L. Bianchi, C. Pirola, and M. Bertelli, “Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis,” Ultrasonics Sonochemistry, vol. 12, no. 5, pp. 395–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Araña, A. Peña Alonso, J. M. Doña Rodríguez, J. A. Herrera Melián, O. González Díaz, and J. Pérez Peña, “Comparative study of MTBE photocatalytic degradation with TiO2 and Cu-TiO2,” Applied Catalysis B, vol. 78, no. 3-4, pp. 355–363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Baus, H. Hung, F. Sacher, M. Fleig, and H.-J. Brauch, “MTBE in drinking water production—occurrence and efficiency of treatment technologies,” Acta Hydrochimica et Hydrobiologica, vol. 33, no. 2, pp. 118–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Asadi and M. Mehrvar, “Degradation of aqueous methyl tert-butyl ether by photochemical, biological, and their combined processes,” International Journal of Photoenergy, vol. 2006, Article ID 19790, 7 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Fayolle, A. François, L. Garnier et al., “Limitations in MTBE biodegradation,” Oil and Gas Science and Technology, vol. 58, no. 4, pp. 497–504, 2003. View at Google Scholar · View at Scopus
  9. N. Y. Fortin, M. Morales, Y. Nakagawa, D. D. Focht, and M. A. Deshusses, “Methyl tert-butyl ether (MTBE) degradation by a microbial consortium,” Environmental Microbiology, vol. 3, no. 6, pp. 407–416, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Bertelli and E. Selli, “Kinetic analysis on the combined use of photocatalysis, H2O2 photolysis, and sonolysis in the degradation of methyl tert-butyl ether,” Applied Catalysis B, vol. 52, no. 3, pp. 205–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. S. M. Chan and R. J. Lynch, “Photocatalytic degradation of aqueous methyl tert-butyl ether (MTBE) in a supported-catalyst reactor,” Environmental Chemistry Letter, vol. 1, no. 3, pp. 157–160, 2003. View at Google Scholar
  12. Q. Hu, C. Zhang, Z. Wang et al., “Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2,” Journal of Hazardous Materials, vol. 154, no. 1–3, pp. 795–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Dindar and S. Içli, “Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight,” Journal of Photochemistry and Photobiology A, vol. 140, no. 3, pp. 263–268, 2001. View at Google Scholar · View at Scopus
  14. S. Devipriya and S. Yesodharan, “Photocatalytic degradation of pesticide contaminants in water,” Solar Energy Materials and Solar Cells, vol. 86, no. 3, pp. 309–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Aal, S. A. Mahmoud, and A. K. Aboul-Gheit, “Nanocrystalline ZnO thin film for photocatalytic purification of water,” Materials Science and Engineering C, vol. 29, no. 3, pp. 831–835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Pal and M. Sharon, “Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process,” Materials Chemistry and Physics, vol. 76, no. 1, pp. 82–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, “Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation,” Journal of Photochemistry and Photobiology B, vol. 104, no. 3, pp. 425–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Eslami, S. Nasseri, B. Yadollahi et al., “Photocatalytic degradation of methyl tert-butyl ether (MTBE) in contaminated water by ZnO nanoparticles,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 11, pp. 1447–1453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Hayat, M. A. Gondal, M. M. Khaled, S. Ahmed, and A. M. Shemsi, “Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water,” Applied Catalysis A, vol. 393, no. 1-2, pp. 122–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Liqiang, Q. Yichun, W. Baiqi et al., “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity,” Solar Energy Materials and Solar Cells, vol. 90, no. 12, pp. 1773–1787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S.-Z. Kang, T. Wu, X. Li, and J. Mu, “A facile gelatin-assisted preparation and photocatalytic activity of zinc oxide nanosheets,” Colloids and Surfaces A, vol. 369, no. 1–3, pp. 268–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. W.-J. Huang, G.-C. Fang, and C.-C. Wang, “A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water,” Colloids and Surfaces A, vol. 260, no. 1–3, pp. 45–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. P. R. Gogate and A. B. Pandit, “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions,” Advances in Environmental Research, vol. 8, no. 3-4, pp. 501–551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Qamar and M. Muneer, “A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin,” Desalination, vol. 249, no. 2, pp. 535–540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Eslami, S. Nasseri, B. Yadollahi, A. Mesdaghinia, F. Vaezi, and R. Nabizadeh, “Removal of methyl tert-butyl ether (MTBE) from contaminated water by photocatalytic process,” Iranian Journal of Public Health, vol. 38, no. 2, pp. 18–26, 2009. View at Google Scholar · View at Scopus
  26. D. Fu, G. Han, Y. Chang, and J. Dong, “The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water,” Materials Chemistry and Physics, vol. 132, no. 2-3, pp. 673–681, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. I. K. Konstantinou and T. A. Albanis, “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review,” Applied Catalysis B, vol. 49, no. 1, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Bekkouche, M. Bouhelassa, N. Hadj Salah, and F. Z. Meghlaoui, “Study of adsorption of phenol on titanium oxide (TiO2),” Desalination, vol. 166, no. 1–3, pp. 355–362, 2004. View at Publisher · View at Google Scholar · View at Scopus