Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 234806, 9 pages
http://dx.doi.org/10.1155/2013/234806
Research Article

Synthesis and Characterization of Pyrochlore Bi2Sn2O7 Doping with Praseodymium by Hydrothermal Method and Its Photocatalytic Activity Study

1College of Chemistry and Environment, South China Normal University, Guangzhou 510631, China
2The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Guangzhou 510655, China

Received 30 May 2013; Revised 15 July 2013; Accepted 15 July 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 Weicheng Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Ali, E. A. C. Emanuelsson, and D. A. Patterson, “Photocatalysis with nanostructured zinc oxide thin films: the relationship between morphology and photocatalytic activity under oxygen limited and oxygen rich conditions and evidence for a Mars Van Krevelen mechanism,” Applied Catalysis B: Environmental, vol. 97, no. 1-2, pp. 168–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Bouzaida, C. Ferronato, J. M. Chovelon, M. E. Rammah, and J. M. Herrmann, “Heterogeneous photocatalytic degradation of the anthraquinonic dye, Acid Blue 25 (AB25): a kinetic approach,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 168, no. 1-2, pp. 23–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Liu, Z. Jian, J. Fang, X. Xu, X. Zhu, and S. Wu, “Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide,” International Journal of Photoenergy, vol. 2012, Article ID 702503, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Choi, H. Park, and M. R. Hoffmann, “Effects of single metal-ion doping on the visible-light photoreactivity of TiO2,” Journal of Physical Chemistry C, vol. 114, no. 2, pp. 783–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Zhou, J. Zhang, B. Cheng, and H. Yu, “Enhancement of visible-light photocatalytic activity of mesoporous Au-TiO2 nanocomposites by surface plasmon resonance,” International Journal of Photoenergy, vol. 2012, Article ID 532843, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Znad, M. H. Ang, and M. O. Tade, “Ta/TiO2-and Nb/TiO2-mixed oxides as efficient solar photocatalysts: preparation, characterization, and photocatalytic activity,” International Journal of Photoenergy, vol. 2012, Article ID 548158, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Yu, Q. Xiang, and M. Zhou, “Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures,” Applied Catalysis B: Environmental, vol. 90, no. 3-4, pp. 595–602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Lu, X. Quan, J. Li, S. Chen, H. Yu, and G. Chen, “Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability,” Journal of Physical Chemistry C, vol. 111, no. 32, pp. 11836–11842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Qian, G. Cui, M. Jing, Y. Wang, M. Zhang, and J. Yang, “Hydrothermal synthesis of nitrogen-doped titanium dioxide and evaluation of its visible light photocatalytic activity,” International Journal of Photoenergy, vol. 2012, Article ID 198497, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Sun, G. Chen, Y. Zhang, Q. Wei, Z. Ma, and B. Du, “Efficient degradation of azo dyes over Sb2S3/TiO2 heterojunction under visible light irradiation,” Industrial and Engineering Chemistry Research, vol. 51, no. 7, pp. 2897–2903, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Ren, G. Liu, Y. Wang, and Q. Shi, “A novel method for the preparation of Bi2Ti2O7 pyrochlore,” Materials Letters, vol. 76, pp. 184–186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Lin, P. Lv, Q. Guan, H. Li, H. Zhai, and C. Liu, “Bismuth titanate microspheres: directed synthesis and their visible light photocatalytic activity,” Applied Surface Science, vol. 258, no. 18, pp. 7146–7153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Cloet, P. Lommens, R. Hühne, K. de Buysser, S. Hoste, and I. van Driessche, “A study of the parameters influencing the microstructure of thick La2Zr2O7 films,” Journal of Crystal Growth, vol. 325, no. 1, pp. 68–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Li, X. Zhang, L. Ji, P. Ning, and Q. Liao, “Dielectric properties and electrical behaviors of tunable Bi1.5MgNb1.5O7 thin films,” Ceramics International, vol. 38, no. 5, pp. 3541–3545, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Rastomjee, R. S. Dale, R. J. Schaffer et al., “An investigation of doping of SnO2 by ion implantation and application of ion-implanted films as gas sensors,” Thin Solid Films, vol. 279, no. 1-2, pp. 98–105, 1996. View at Google Scholar · View at Scopus
  16. C. A. Mims, A. J. Jacobson, R. B. Hall, and J. T. Lewandowski, “Methane oxidative coupling over nonstoichiometric bismuth-tin pyrochlore catalysts,” Journal of Catalysis, vol. 153, no. 2, pp. 197–207, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Ratna Phani, S. Manorama, and V. J. Rao, “Effect of additives on the response of sensors utilizing semiconducting oxide on carbon monoxide sensitivity,” Applied Physics Letters, vol. 66, no. 25, pp. 3489–3491, 1995. View at Google Scholar · View at Scopus
  18. Q. Tian, J. Zhuang, J. Wang, L. Xie, and P. Liu, “Novel photocatalyst, Bi2Sn2O7, for photooxidation of As(III) under visible-light irradiation,” Applied Catalysis A: General, vol. 425-426, pp. 74–78, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Moens, P. Ruiz, B. Delmon, and M. Devillers, “Evaluation of the role played by bismuth molybdates in Bi2Sn2O7-MoO3 catalysts used for partial oxidation of isobutene to methacrolein,” Applied Catalysis A: General, vol. 180, no. 1-2, pp. 299–315, 1999. View at Google Scholar · View at Scopus
  20. H. W. Kim, S. H. Shim, J. W. Lee et al., “Bi2Sn2O7 nanoparticles attached to SnO2 nanowires and used as catalysts,” Chemical Physics Letters, vol. 456, no. 4–6, pp. 193–197, 2008. View at Google Scholar
  21. J. Wu, F. Huang, X. Lü, P. Chen, D. Wan, and F. Xu, “Improved visible-light photocatalysis of nano-Bi2Sn2O7 with dispersed s-bands,” Journal of Materials Chemistry, vol. 21, no. 11, pp. 3872–3876, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Yang, J. Dai, and J. Li, “Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity,” Applied Surface Science, vol. 257, no. 21, pp. 8965–8973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. H. X. Shi, T. Y. Zhang, T. C. An et al., “Enhancement of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids,” Journal of Colloid and Interface Science, vol. 380, no. 1, pp. 121–127, 2012. View at Publisher · View at Google Scholar
  24. V. Stengl, S. Bakardjieva, and N. Murafa, “Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles,” Materials Chemistry and Physics, vol. 114, no. 1, pp. 217–226, 2009. View at Google Scholar
  25. S. X. Wu, J. Z. Fang, X. X. Xu et al., “Microemulsion synthesis, characterization of highly visible light responsive rare earth doped Bi2O3,” Photochemistry and Photobiology, vol. 88, no. 5, pp. 1205–1210, 2012. View at Publisher · View at Google Scholar
  26. X. Z. Ding and X. H. Liu, “Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders,” Journal of Materials Research, vol. 13, no. 9, pp. 2556–2559, 1998. View at Publisher · View at Google Scholar
  27. M. Ge, Y. F. Li, L. Liu et al., “Bi2O3—Bi2WO6 composite microspheres: hydrothermal synthesis and photocatalytic performances,” The Journal of Physical Chemistry, vol. 115, no. 13, pp. 5220–5225, 2011. View at Google Scholar
  28. Y. C. Zhang, Z. N. Du, K. W. Li, and M. Zhang, “Size-controlled hydrothermal synthesis of SnS2 nanoparticles with high performance in visible light-driven photocatalytic degradation of aqueous methyl orange,” Separation and Purification Technology, vol. 81, no. 1, pp. 101–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Takeuchi, Y. Shimizu, H. Yamagawa, T. Nakamuro, and M. Anpo, “Preparation of the visible light responsive N3—doped WO3 photocatalyst by a thermal decomposition of ammonium paratungstate,” Applied Catalysis B: Environmental, vol. 110, no. 2, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A.-W. Xu, Y. Gao, and H.-Q. Liu, “The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles,” Journal of Catalysis, vol. 207, no. 2, pp. 151–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. K.-I. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, “Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique,” Electrochemistry Communications, vol. 2, no. 3, pp. 207–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. S. X. Wu, J. Z. Fang, W. C. Xu et al., “Hydrothermal synthesis, characterization of visible-light-driven α-Bi2O2 enhanced by Pr3+ doping,” Journal of Chemical Technology and Biotechnology, vol. 2013, 8 pages, 2013. View at Publisher · View at Google Scholar
  33. Q. Xiang, J. Yu, and P. K. Wong, “Quantitative characterization of hydroxyl radicals produced by various photocatalysts,” Journal of Colloid and Interface Science, vol. 357, no. 1, pp. 163–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Yang, G. Zhang, and W. Xu, “Facile synthesis and photocatalytic properties of AgAgClTiO2/rectorite composite,” Journal of Colloid and Interface Science, vol. 376, no. 1, pp. 217–223, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Ebitani, Y. Hirano, and A. Morikawa, “Rare earth Ions as heterogeneous photocatalysts for the decomposition of dinitrogen monoxide (N2O),” Journal of Catalysis, vol. 157, no. 1, pp. 262–265, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Yan, J. He, D. G. Evans, X. Duan, and Y. Zhu, “Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors,” Applied Catalysis B: Environmental, vol. 55, no. 4, pp. 243–252, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. K. Reddy, B. Srinivas, V. D. Kumari et al., “Sm3+-doped Bi2O3 photocatalyst prepared by hydrothermal synthesis,” ChemCatChem, vol. 3, no. 2, pp. 360–364, 2009. View at Google Scholar