Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 296314, 7 pages
http://dx.doi.org/10.1155/2013/296314
Research Article

Preparation and Characterization of Chitosan Binder-Based Electrode for Dye-Sensitized Solar Cells

1Department of Electrical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea
2The Research Institute of Advanced Engineering Technology, Chosun University, Gwangju 501-759, Republic of Korea
3Southwestern Research Institute of Green Energy, Mokpo 530-400, Republic of Korea
4Department of Chemical and Biochemical Engineering, Chosun University, Gwangju 590-170, Republic of Korea
5Gist Technology Institute, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
6Department of Environmental Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea
7School of Materials Science & Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea

Received 21 May 2013; Revised 3 August 2013; Accepted 1 September 2013

Academic Editor: Mark van Der Auweraer

Copyright © 2013 En Mei Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. J. Kramer, A. G. Pattantyus-Abraham, A. R. Barkhouse et al., “RETRACTED: advances in colloidal quantum dot solar cells: the depleted-heterojunction device,” Thin Solid Films, vol. 519, no. 21, pp. 7351–7355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Kuang, P. Comte, S. M. Zakeeruddin et al., “Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte,” Solar Energy, vol. 85, no. 6, pp. 1189–1194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. I. K. Ding, J. Melas-Kyriazi, N. L. Cevey-Ha et al., “Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading,” Organic Electronics, vol. 11, no. 7, pp. 1217–1222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. Yum, S. J. Moon, C. S. Karthikeyan et al., “Heteroleptic ruthenium complex containing substituted triphenylamine hole-transport unit as sensitizer for stable dye-sensitized solar cell,” Nano Energy, vol. 1, no. 1, pp. 6–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Calogero, J. H. Yum, A. Sinopoli, G. D. Marco, M. Grätzel, and M. K. Nazeeruddin, “Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells,” Solar Energy, vol. 86, no. 5, pp. 1563–1575, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Google Scholar · View at Scopus
  7. H. Lindström, A. Holmberg, E. Magnusson, L. Malmqvist, and A. Hagfeldt, “A new method to make dye-sensitized nanocrystalline solar cells at room temperature,” Journal of Photochemistry and Photobiology A, vol. 145, no. 1-2, pp. 107–112, 2001. View at Google Scholar · View at Scopus
  8. B. Tan and Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” Journal of Physical Chemistry B, vol. 110, no. 32, pp. 15932–15938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. Jin, K. H. Park, J. J. Yun et al., “Photovoltaic properties of TiO2 photoelectrode prepared by using liquid PEG-EEM binder,” Surface Review and Letters, vol. 17, no. 1, pp. 15–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. H. Park, H. B. Gu, E. M. Jin, and M. Dhayal, “Using hybrid silica-conjugated TiO2 nanostructures to enhance the efficiency of dye-sensitized solar cells,” Electrochimica Acta, vol. 55, no. 19, pp. 5499–5505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 90, no. 9, pp. 1176–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Pettersson, T. Gruszecki, L. Johansson, M. O. M. Edwards, A. Hagfeldt, and T. Matuszczyk, “Direct-driven electrochromic displays based on nanocrystalline electrodes,” Displays, vol. 25, no. 5, pp. 223–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. E. L. Tae, S. H. Lee, J. K. Lee, S. S. Yoo, E. J. Kang, and K. B. Yoon, “A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands,” Journal of Physical Chemistry B, vol. 109, no. 47, pp. 22513–22522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Y. Lin, T. J. Chen, and C. K. Hu, “Effects of anodic titanium oxide nanotube arrays on dye-sensitized solar cells,” Journal of the Chinese Chemical Society, vol. 57, no. 5, pp. 1176–1179, 2010. View at Google Scholar · View at Scopus
  15. K. Nelson and Y. Deng, “Effect of polycrystalline structure of TiO2 particles on the light scattering efficiency,” Journal of Colloid and Interface Science, vol. 319, no. 1, pp. 130–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. C. S. Chou, R. Y. Yang, C. K. Yeh, and Y. J. Lin, “Preparation of TiO2/nano-metal composite particles and their applications in dye-sensitized solar cells,” Powder Technology, vol. 194, no. 1-2, pp. 95–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. Kao, H. Z. Chen, S. L. Young, C. Y. Kung, and C. C. Lin, “The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells,” Thin Solid Films, vol. 517, no. 17, pp. 5096–5099, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Odobel, Y. Pellegrin, E. A. Gibson, A. Hagfeldt, A. L. Smeigh, and L. Hammarstrom, “Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells,” Coordination Chemistry Reviews, vol. 256, no. 21-22, pp. 2414–2423, 2012. View at Publisher · View at Google Scholar
  19. N. Fuke, A. Fukui, A. Islam et al., “Influence of TiO2/electrode interface on electron transport properties in back contact dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 720–724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Xu, P. H. Shin, L. Cao, J. Wu, and D. Gao, “Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells,” Chemistry of Materials, vol. 22, no. 1, pp. 143–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. B. Tang, C. S. Lee, J. Xu et al., “Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application,” ACS Nano, vol. 4, no. 6, pp. 3482–3488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. S. Nair, R. Jose, Y. Shengyuan, and S. Ramakrishna, “A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell,” Journal of Colloid and Interface Science, vol. 353, no. 1, pp. 39–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, M. Bernard, N. Spyrellis, and P. Falaras, “Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol-gel techniques,” Journal of Materials Processing Technology, vol. 196, no. 1–3, pp. 243–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Bernacka-Wojcik, R. Senadeera, P. J. Wojcik et al., “Inkjet printed and “doctor blade” TiO2 photodetectors for DNA biosensors,” Biosensors and Bioelectronics, vol. 25, no. 5, pp. 1229–1234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Nang Dinh, N. Minh Quyen, D. N. Chung, M. Zikova, and V. V. Truong, “Highly-efficient electrochromic performance of nanostructured TiO 2 films made by doctor blade technique,” Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 618–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Saito, S. Kambe, T. Kitamura, Y. Wada, and S. Yanagida, “Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 83, no. 1, pp. 1–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Grätzel, “Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells,” Comptes Rendus Chimie, vol. 9, no. 5-6, pp. 578–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Kuang, C. Klein, H. J. Snaith, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “A new ion-coordinating ruthenium sensitizer for mesoscopic dye-sensitized solar cells,” Inorganica Chimica Acta, vol. 361, no. 3, pp. 699–706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. C. Yang, H. Q. Zhang, and Y. R. Zheng, “DSSC with a novel Pt counter electrodes using pulsed electroplating techniques,” Current Applied Physics, vol. 11, no. 1, supplement, pp. S147–S153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. G. Deepa, P. Lekha, and S. Sindhu, “Efficiency enhancement in DSSC using metal nanoparticles: a size dependent study,” Solar Energy, vol. 86, no. 1, pp. 326–330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, “Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell,” Nanotechnology, vol. 18, no. 36, Article ID 365709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. B. Baxter and E. S. Aydil, “Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,” Solar Energy Materials and Solar Cells, vol. 90, no. 5, pp. 607–622, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism,” Journal of the American Chemical Society, vol. 126, no. 45, pp. 14943–14949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. H. Kang, S. H. Choi, M. S. Kang et al., “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Advanced Materials, vol. 20, no. 1, pp. 54–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays,” Nano Letters, vol. 7, no. 1, pp. 69–74, 2007. View at Publisher · View at Google Scholar · View at Scopus