Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 340347, 9 pages
http://dx.doi.org/10.1155/2013/340347
Research Article

Treatment of Effluent from a Factory of Paints Using Solar Photo-Fenton Process

1Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
2Departamento de Química, Universidade Federal de Goiás, 75704-020 Catalão, GO, Brazil

Received 31 May 2013; Revised 31 August 2013; Accepted 31 August 2013

Academic Editor: Mika Sillanpaa

Copyright © 2013 Alam Gustavo Trovó et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. DeLorenzo, G. I. Scott, and P. E. Ross, “Toxicity of pesticides to aquatic microorganisms: a review,” Environmental Toxicology and Chemistry, vol. 20, no. 1, pp. 84–98, 2001. View at Google Scholar · View at Scopus
  2. K. Kümmerer, “Antibiotics in the aquatic environment: a review—part I,” Chemosphere, vol. 75, no. 4, pp. 417–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Goi, Y. Veressinina, and M. Trapido, “Fenton process for landfill leachate treatment: evaluation of biodegradability and toxicity,” Journal of Environmental Engineering, vol. 136, no. 1, pp. 46–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Zapata, T. Velegraki, J. A. Sánchez-Pérez, D. Mantzavinos, M. I. Maldonado, and S. Malato, “Solar photo-Fenton treatment of pesticides in water: effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability,” Applied Catalysis B, vol. 88, no. 3-4, pp. 448–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Zapata, I. Oller, C. Sirtori et al., “Decontamination of industrial wastewater containing pesticides by combining large-scale homogeneous solar photocatalysis and biological treatment,” Chemical Engineering Journal, vol. 160, no. 2, pp. 447–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Sirtori, A. Zapata, I. Oller, W. Gernjak, A. Agüera, and S. Malato, “Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment,” Water Research, vol. 43, no. 3, pp. 661–668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. L.-A. Lu, Y.-S. Ma, M. Kumar, and J.-G. Lin, “Photo-Fenton pretreatment of carbofuran—analyses via experimental design, detoxification and biodegradability enhancement,” Separation and Purification Technology, vol. 81, no. 3, pp. 325–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Lopez-Alvarez, R. A. Torres-Palma, F. Ferraro, and G. Penuela, “Solar photo-Fenton treatment of carbofuran: analysis of mineralization, toxicity, and organic by-products,” Journal of Environmental Science and Health A, vol. 47, no. 13, pp. 2141–2150, 2012. View at Google Scholar
  9. A. Machulek Jr, F. H. Quina, F. Gozzi, V. O. Silva, L. C. Friedrich, and J. E. F. Moraes, “Fundamental mechanistic studies of the photo-Fenton reaction for the degradation of organic pollutants,” in Organic Pollutants Ten Years after the Stockholm Convention—Environmental and Analytical Update, pp. 271–292, InTech, Rijeka, Croatia, 2012. View at Google Scholar
  10. A. E. D. H. Machado, T. P. Xavier, D. R. De Souza et al., “Solar photo-fenton treatment of chip board production waste water,” Solar Energy, vol. 77, no. 5, pp. 583–589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Sattler, L. de Oliveira, M. Tzschirner, and A. E. H. Machado, “Solar photocatalytic water detoxification of paper mill effluents,” Energy, vol. 29, no. 5-6, pp. 835–843, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. E. S. Elmolla and M. Chaudhuri, “Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution,” Desalination, vol. 256, no. 1–3, pp. 43–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Durán, J. M. Monteagudo, and I. San Martín, “Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: an operational cost study on a pilot plant scale,” Journal of Environmental Management, vol. 98, no. 1, pp. 1–4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Kositzi, A. Antoniadis, I. Poulios, I. Kiridis, and S. Malato, “Solar photocatalytic treatment of simulated dyestuff effluents,” Solar Energy, vol. 77, no. 5, pp. 591–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Ay, E. C. Catalkaya, and F. Kargi, “A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 230–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Jonstrup, M. Punzi, and B. Mattiasson, “Comparison of anaerobic pre-treatment and aerobic post-treatment coupled to photo-Fenton oxidation for degradation of azo dyes,” Journal of Photochemistry and Photobiology A, vol. 224, no. 1, pp. 55–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Punzi, B. Mattiasson, and M. Jonstrup, “Treatment of synthetic textile wastewater by homogeneous and heterogeneous photo-Fenton oxidation,” Journal of Photochemistry and Photobiology A, vol. 248, pp. 30–35, 2012. View at Google Scholar
  18. E. R. Bandala, M. A. Peláez, A. J. García-López, M. D. J. Salgado, and G. Moeller, “Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes,” Chemical Engineering and Processing, vol. 47, no. 2, pp. 169–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. V. J. P. Vilar, L. X. Pinho, A. M. A. Pintor, and R. A. R. Boaventura, “Treatment of textile wastewaters by solar-driven advanced oxidation processes,” Solar Energy, vol. 85, no. 9, pp. 1927–1934, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. E. GilPavas, I. Dobrosz-Gomez, and M. A. Gomez-Garcia, “Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the response surface methodology as the optimization tool,” Water Science and Technology, vol. 65, no. 10, pp. 1795–1800, 2012. View at Google Scholar
  21. “CETESB—Companhia de Tecnologia de Saneamento Ambiental,” 2013, Guia Técnico Ambiental Tintas e Vernizes—Sério P+L., http://www.cetesb.sp.gov.br/tecnologia/producao_limpa/documentos/tintas.pdf.
  22. R. F. P. Nogueira, A. G. Trovó, and W. C. Paterlini, “Evaluation of the combined solar TiO2/photo-Fenton process using multivariate analysis,” Water Science and Technology, vol. 49, no. 4, pp. 195–200, 2004. View at Google Scholar · View at Scopus
  23. R. F. Pupo Nogueira and J. R. Guimarães, “Photodegradation of dichloroacetic acid and 2,4-dichlorophenol by ferrioxalate/H2O2 system,” Water Research, vol. 34, no. 3, pp. 895–901, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J. J. Pignatello, “Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide,” Environmental Science and Technology, vol. 26, no. 5, pp. 944–951, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. APHA/AWWA/WEF, Standard Methods for the Examination of Water and wasteWater, American Public Health Association, New York, NY, USA, 12th edition, 1998.
  26. R. F. P. Nogueira, M. C. Oliveira, and W. C. Paterlini, “Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate,” Talanta, vol. 66, no. 1, pp. 86–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. G. Trovó, T. F. S. Silva, O. Gomes Jr. et al., “Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design,” Chemosphere, vol. 90, no. 2, pp. 170–175, 2013. View at Google Scholar
  28. A. G. Trovó and R. F. P. Nogueira, “Diclofenac abatement using modified solar photo-Fenton process with ammonium iron(III) citrate,” Journal of the Brazilian Chemical Society, vol. 22, no. 6, pp. 1033–1039, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. A. S. Melo, A. G. Trovó, I. R. Bautitz, and R. F. P. Nogueira, “Degradation of residual pharmaceuticals by advanced oxidation processes,” Quimica Nova, vol. 32, no. 1, pp. 188–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Jiang, S. Pang, F. Ouyang, J. Ma, and J. Jiang, “A new insight into Fenton and Fenton-like processes for water treatment,” Journal of Hazardous Materials, vol. 174, no. 1–3, pp. 813–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. J. De Laat and H. Gallard, “Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling,” Environmental Science and Technology, vol. 33, no. 16, pp. 2726–2732, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. R. F. Pupo Nogueira, A. G. Trovó, M. R. A. Da Silva, R. D. Villa, and M. C. De Oliveira, “Fundaments and environmental applications of Fenton and photo-Fenton processes,” Quimica Nova, vol. 30, no. 2, pp. 400–408, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. G. Trovó, O. Gomes Jr., A. E. H. Machado, W. Borges Neto, and J. O. Silva, “Degradation of the herbicide paraquat by photo-Fenton process: optimization by experimental design and toxicity assessment,” Journal of the Brazilian Chemical Society, vol. 24, no. 1, pp. 76–84, 2013. View at Google Scholar
  34. A. G. Trovó, R. F. P. Nogueira, A. Agüera, A. R. Fernandez-Alba, and S. Malato, “Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species,” Water Research, vol. 46, no. 16, pp. 5374–5380, 2012. View at Google Scholar
  35. W. Gernjak, T. Krutzler, A. Glaser et al., “Photo-fenton treatment of water containing natural phenolic pollutants,” Chemosphere, vol. 50, no. 1, pp. 71–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: recent overview and trends,” Catalysis Today, vol. 147, no. 1, pp. 1–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. G. Trovó, R. F. P. Nogueira, A. Agüera, A. R. Fernandez-Alba, C. Sirtori, and S. Malato, “Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation,” Water Research, vol. 43, no. 16, pp. 3922–3931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. G. Trovó, R. F. Pupo Nogueira, A. Agüera, A. R. Fernandez-Alba, and S. Malato, “Degradation of the antibiotic amoxicillin by photo-Fenton process—chemical and toxicological assessment,” Water Research, vol. 45, no. 3, pp. 1394–1402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. E. M. R. Rocha, V. J. P. Vilar, A. Fonseca, I. Saraiva, and R. A. R. Boaventura, “Landfill leachate treatment by solar-driven AOPs,” Solar Energy, vol. 85, no. 1, pp. 46–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Rodríguez, J. B. Gálvez, M. I. M. Rubio et al., “Engineering of solar photocatalytic collectors,” Solar Energy, vol. 77, no. 5, pp. 513–524, 2004. View at Google Scholar