Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 348171, 12 pages
http://dx.doi.org/10.1155/2013/348171
Research Article

Characterization and Photocatalytic Activity of TiO2 Nanotube Films Prepared by Anodization

Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Rd., Wufeng District, Taichung 41349, Taiwan

Received 10 February 2013; Revised 15 April 2013; Accepted 16 April 2013

Academic Editor: Gang Liu

Copyright © 2013 Wen-Yu Wang and Bo-Ruei Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Blake, “Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air,” Tech. Rep., U.S. National Renewable Energy Laboratory, Golden, Colo, USA, 2001. View at Google Scholar
  2. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. View at Google Scholar · View at Scopus
  4. J. M. Macák, H. Tsuchiya, A. Ghicov, and P. Schmuki, “Dye-sensitized anodic TiO2 nanotubes,” Electrochemistry Communications, vol. 7, no. 11, pp. 1133–1137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Quan, X. Ruan, H. Zhao, S. Chen, and Y. Zhao, “Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode,” Environmental Pollution, vol. 147, no. 2, pp. 409–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Wang, X. Li, Y. Wang, X. Quan, and G. Chen, “Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method,” Chemical Engineering Journal, vol. 146, no. 1, pp. 30–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Hoyer, “Formation of a titanium dioxide nanotube array,” Langmuir, vol. 12, no. 6, pp. 1411–1413, 1996. View at Google Scholar · View at Scopus
  8. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Formation of titanium oxide nanotube,” Langmuir, vol. 14, no. 12, pp. 3160–3163, 1998. View at Google Scholar · View at Scopus
  9. D. Gong, C. A. Grimes, O. K. Varghese et al., “Titanium oxide nanotube arrays prepared by anodic oxidation,” Journal of Materials Research, vol. 16, no. 12, pp. 3331–3334, 2001. View at Google Scholar · View at Scopus
  10. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications,” Solar Energy Materials and Solar Cells, vol. 90, no. 14, pp. 2011–2075, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Alivov and Z. Y. Fan, “Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles,” Applied Physics Letters, vol. 95, no. 6, Article ID 063504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Y. Wang and Y. Ku, “Photocatalytic degradation of reactive red 22 in aqueous solution by UV-LED radiation,” Water Research, vol. 40, no. 12, pp. 2249–2258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Valota, D. J. LeClere, P. Skeldon et al., “Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes,” Electrochimica Acta, vol. 54, no. 18, pp. 4321–4327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. G. Lee, J. W. Choi, S. E. Lee, Y. S. Jeong, H. J. OH, and C. S. Chi, “Formation behavior of anodic TiO2 nanotubes in fluoride containing electrolytes,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 4, pp. 842–845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Macak, H. Hildebrand, U. Marten-Jahns, and P. Schmuki, “Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes,” Journal of Electroanalytical Chemistry, vol. 621, no. 2, pp. 254–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation,” Journal of Materials Research, vol. 20, no. 1, pp. 230–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. G. A. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, “Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate,” Acta Biomaterialia, vol. 3, no. 3, pp. 359–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Macak and P. Schmuki, “Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes,” Electrochimica Acta, vol. 52, no. 3, pp. 1258–1264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Y. Kim, J. H. Park, and G. Y. Han, “Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation,” Journal of Power Sources, vol. 184, no. 1, pp. 284–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. C. Lim, Z. Zainal, W. T. Tan, and M. Z. Hussein, “Anodization parameters influencing the growth of titania nanotubes and their photoelectrochemical response,” International Journal of Photoenergy, vol. 2012, Article ID 638017, 9 pages, 2012. View at Publisher · View at Google Scholar
  21. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Enhanced photocleavage of water using titania nanotube arrays,” Nano Letters, vol. 5, no. 1, pp. 191–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Macák, H. Tsuchiya, and P. Schmuki, “High-aspect-ratio TiO2 nanotubes by anodization of titanium,” Angewandte Chemie, vol. 44, no. 14, pp. 2100–2102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Macak, M. Zlamal, J. Krysa, and P. Schmuki, “Self-organized TiO2 nanotube layers as highly efficient photocatalysts,” Small, vol. 3, no. 2, pp. 300–304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Wu, Z. Huang, Y. Liu, and M. Fang, “Investigation on the photoelectrocatalytic activity of well-aligned TiO2 nanotube arrays,” International Journal of Photoenergy, vol. 2012, Article ID 832516, 7 pages, 2012. View at Publisher · View at Google Scholar