Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 350570, 6 pages
Research Article

Removal of Formaldehyde Using Highly Active Pt/TiO2 Catalysts without Irradiation

1School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
2Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
3Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

Received 19 July 2013; Accepted 29 July 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 Haibao Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Formaldehyde (HCHO) is one of the major indoor air pollutants. TiO2 supported Pt catalysts were prepared by sol-gel method and used to eliminate HCHO at room temperature without irradiation. The reduced Pt/TiO2 catalyst (denoted as Pt/TiO2-H2) showed much higher activity than that calcined in air (denoted as Pt/TiO2-air). More than 96% of the conversion of HCHO was obtained over 0.5 wt% Pt/TiO2-H2, on which highly dispersed metallic Pt nanoparticles with very small size (~2 nm) were identified. Metallic Pt rather than cationic Pt nanoparticles provide the active sites for HCHO oxidation. Negatively charged metallic Pt nanoparticles facilitate the transfer of charge and oxygen species and the activation of oxygen.