Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013, Article ID 350570, 6 pages
http://dx.doi.org/10.1155/2013/350570
Research Article

Removal of Formaldehyde Using Highly Active Pt/TiO2 Catalysts without Irradiation

1School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
2Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
3Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

Received 19 July 2013; Accepted 29 July 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 Haibao Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Chen, X. Yang, and Q. Wu, “Photocatalytic oxidation of Escherischia coli, Aspergillus niger, and formaldehyde under different ultraviolet irradiation conditions,” Environmental Science and Technology, vol. 43, no. 12, pp. 4606–4611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Tang, J. Chen, Y. Li, Y. Li, Y. Xu, and W. Shen, “Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts,” Chemical Engineering Journal, vol. 118, no. 1-2, pp. 119–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Sekine, “Oxidative decomposition of formaldehyde by metal oxides at room temperature,” Atmospheric Environment, vol. 36, no. 35, pp. 5543–5547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Zhang, H. He, and K.-I. Tanaka, “Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature,” Catalysis Communications, vol. 6, no. 3, pp. 211–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Peng and S. Wang, “Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures,” Applied Catalysis B, vol. 73, no. 3, pp. 282–291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Zhang, H. He, and K.-I. Tanaka, “Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature,” Applied Catalysis B, vol. 65, no. 1-2, pp. 37–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Tang, J. Chen, X. Huang, Y. Xu, and W. Shen, “Pt/MnOx-CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature,” Applied Catalysis B, vol. 81, no. 1-2, pp. 115–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Peng and S. Wang, “Correlation between microstructure and performance of Pt/TiO2 catalysts for formaldehyde catalytic oxidation at ambient temperature: effects of hydrogen pretreatment,” Journal of Physical Chemistry C, vol. 111, no. 27, pp. 9897–9904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Wen, X. Tang, J. Li, J. Hao, L. Wei, and X. Tang, “Impact of synthesis method on catalytic performance of MnOx-SnO2 for controlling formaldehyde emission,” Catalysis Communications, vol. 10, no. 8, pp. 1157–1160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Tang, Y. Li, X. Huang et al., “MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature,” Applied Catalysis B, vol. 62, no. 3-4, pp. 265–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Yu, M. Jaroniec, and G. Lu, “TiO2 Photocatalytic Materials,” International Journal of Photoenergy, vol. 2012, Article ID 206183, 5 pages, 2012. View at Publisher · View at Google Scholar
  12. L. Wang, Q. Zhang, M. Sakurai, and H. Kameyama, “Development of a Pt/TiO2 catalyst on an anodic alumite film for catalytic decomposition of formaldehyde at room temperature,” Catalysis Communications, vol. 8, no. 12, pp. 2171–2175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Wang, M. Sakurai, and H. Kameyama, “Study of catalytic decomposition of formaldehyde on Pt/TiO2 alumite catalyst at ambient temperature,” Journal of Hazardous Materials, vol. 167, no. 1–3, pp. 399–405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Zhang and H. He, “A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature,” Catalysis Today, vol. 126, no. 3-4, pp. 345–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Xu, J. Yu, and W. Xiao, “Microemulsion-assisted preparation of a mesoporous ferrihydrite/SiO2 composite for the efficient removal of formaldehyde from air,” Chemistry, vol. 19, pp. 9592–9598, 2013. View at Google Scholar
  16. Z. Xu, J. Yu, G. Liu, B. Cheng, P. Zhou, and X. Li, “Microemulsion-assisted synthesis of hierarchical porous Ni(OH)2/SiO2 composites toward efficient removal of formaldehyde in air,” Dalton Transactions, vol. 42, pp. 10190–10197, 2013. View at Google Scholar
  17. H. Yoshida, Y. Yazawa, and T. Hattori, “Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion,” Catalysis Today, vol. 87, no. 1–4, pp. 19–28, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Vinodgopal, U. Stafford, K. A. Gray, and P. V. Kamat, “Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-Chlorophenol on immobilized TiO2 particulate films,” Journal of Physical Chemistry, vol. 98, no. 27, pp. 6797–6803, 1994. View at Google Scholar · View at Scopus
  19. M. C. Kung, R. J. Davis, and H. H. Kung, “Understanding au-catalyzed low-temperature CO oxidation,” Journal of Physical Chemistry C, vol. 111, no. 32, pp. 11767–11775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Shen, X. Yang, Y. Wang et al., “The states of gold species in CeO2 supported gold catalyst for formaldehyde oxidation,” Applied Catalysis B, vol. 79, no. 2, pp. 142–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Aramendía, J. C. Colmenares, A. Marinas et al., “Effect of the redox treatment of Pt/TiO2 system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol,” Catalysis Today, vol. 128, no. 3-4, pp. 235–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Huang, C. Zhang, and H. He, “Complete oxidation of o-xylene over Pd/Al2O3 catalyst at low temperature,” Catalysis Today, vol. 139, no. 1-2, pp. 15–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S.-K. Ihm, Y.-D. Jun, D.-C. Kim, and K.-E. Jeong, “Low-temperature deactivation and oxidation state of Pd/γ-Al2O3 catalysts for total oxidation of n-hexane,” Catalysis Today, vol. 93-95, pp. 149–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. W. G. Shim, J. W. Lee, and S. C. Kim, “Analysis of catalytic oxidation of aromatic hydrocarbons over supported palladium catalyst with different pretreatments based on heterogeneous adsorption properties,” Applied Catalysis B, vol. 84, no. 1-2, pp. 133–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. M. Cordi and J. L. Falconer, “Oxidation of volatile organic compounds on Al2O3, Pd/Al2O3, and PdO/Al2O3 catalysts,” Journal of Catalysis, vol. 162, no. 1, pp. 104–117, 1996. View at Google Scholar · View at Scopus
  26. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” Journal of Catalysis, vol. 115, no. 2, pp. 301–309, 1989. View at Google Scholar · View at Scopus
  27. S. Arrii, F. Morfin, A. J. Renouprez, and J. L. Rousset, “Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution,” Journal of the American Chemical Society, vol. 126, no. 4, pp. 1199–1205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Weiher, A. M. Beesley, N. Tsapatsaris et al., “Activation of oxygen by metallic gold in Au/TiO2 catalysts,” Journal of the American Chemical Society, vol. 129, no. 8, pp. 2240–2241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. O. S. Alexeev, S. Y. Chin, M. H. Engelhard, L. Ortiz-Soto, and M. D. Amiridis, “Effects of reduction temperature and metal-support interactions on the catalytic activity of Pt/γ-Al2O3 and Pt/TiO2 for the oxidation of CO in the presence and absence of H2,” Journal of Physical Chemistry B, vol. 109, no. 49, pp. 23430–23443, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Liu, X. Wang, F. Yang, and X. Yang, “Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films,” Microporous and Mesoporous Materials, vol. 114, no. 1–3, pp. 431–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Nie, J. Yu, X. Li, B. Cheng, G. Liu, and M. Jaroniec, “Enhanced performance of NaOH-Modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde,” Environmental Science & Technology, vol. 47, pp. 2777–2783, 2013. View at Google Scholar