Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2013 (2013), Article ID 398912, 8 pages
http://dx.doi.org/10.1155/2013/398912
Research Article

Effects of Hole-Collecting Buffer Layers and Electrodes on the Performance of Flexible Plastic Organic Photovoltaics

1Green Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
2Department of Advanced Energy Material Science and Engineering, Catholic University of Daegu, Gyeongbuk 712-702, Republic of Korea
3Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea

Received 11 June 2013; Accepted 8 July 2013

Academic Editor: Stefano Caramori

Copyright © 2013 Sungho Woo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Here we report the influences of the sheet resistance () of a hole-collecting electrode (indium tin oxide, ITO) and the conductivity of a hole-collecting buffer layer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) on the device performance of flexible plastic organic photovoltaic (OPV) devices. The series resistance () of OPV devices steeply increases with increasing of the ITO electrode, which leads to a significant decrease of short-circuit current density () and fill factor (FF) and power conversion efficiency, while the open-circuit voltage () was almost constant. By applying high-conductivity PEDOT:PSS, the efficiency of OPV devices with high values of 160 Ω/□ and 510 Ω/□ is greatly improved, by a factor of 3.5 and 6.5, respectively. These results indicate that the conductivities of ITO and PEDOT:PSS will become more important to consider for manufacturing large-area flexible plastic OPV modules.